Asset Pricing in General Equilibrium with Constraints*

Georgy Chabakauri  
London Business School  
Institute of Finance and Accounting  
Regent’s Park  
London NW1 4SA  
United Kingdom  
Tel: (44) 20 7000 8241  
Fax: (44) 20 7000 8201  
gchabakauri.phd2004@london.edu

Job Market Paper

November 2008

*I am grateful to Suleyman Basak, Francisco Gomes, Christopher Hennessy, Igor Makarov, Anna Pavlova, Raman Uppal and seminar participants at London Business School for helpful comments. All errors are my responsibility.
Asset Pricing in General Equilibrium with Constraints

Abstract

We study dynamic equilibrium in a continuous-time economy with one consumption good and two heterogeneous investors facing portfolio constraints. Despite numerous applications, portfolio constraints are notoriously difficult to incorporate into dynamic equilibrium analysis unless constrained investors are assumed to have logarithmic preferences. Our solution method yields new insights on the impact of constraints on price-dividend ratios, stock return volatilities and other parameters without relying on this assumption. We recover expressions for interest rates and market prices of risk for general preferences in terms of empirically observable although endogenous quantities. Based on these results we compute the equilibrium in specific economic settings where both investors have (identical for simplicity) CRRA preferences and one of them faces portfolio constraint while the other is unconstrained. First, we look at the constraint that imposes an upper bound on the proportion of wealth invested in stocks, typical for certain pension and hybrid mutual funds, and demonstrate that tighter constraints increase price-dividend ratios and decrease stock-return volatilities. Moreover, we show that the effect of constraints is stronger in bad times when the dividend growth decreases due to adverse shocks. Next, when investors disagree on mean dividend growth rates and the pessimist faces short-sale constraints in proportion to wealth we show that price-dividend ratios increase with tighter constraints while stock return volatilities can go in either direction but move closer to the volatility of dividend growth.

Journal of Economic Literature Classification Numbers: D52, G12.

Keywords: asset pricing, dynamic equilibrium, heterogeneous investors, portfolio constraints, risk sharing, stock return volatility.
1. Introduction

Portfolio constraints and market frictions have long been considered among key contributors towards understanding the investor behavior and equilibrium asset prices. In particular, dynamic equilibrium models with heterogeneous investors facing portfolio constraints have extensively been employed by financial economists to confront a wide range of phenomena such as the equity premium puzzle, mispricing of redundant assets, role of arbitrageurs, impact of heterogeneous beliefs on asset prices, and stock comovements (e.g., among others, Detemple and Murthy, 1997; Basak and Cuoco, 1998; Basak and Croitoru, 2000, 2006; Kogan, Makarov and Uppal, 2007; Gallmeyer and Hollifield, 2008; Pavlova and Rigobon, 2008). However, tractable characterizations of equilibria are only obtained assuming that a constrained investor has logarithmic preferences which simplifies the analysis at the cost of investor’s myopia.\footnote{The assumption that one investor has logarithmic preferences is also commonly made for tractability in models with unconstrained investors who differ in risk aversions. Thus, Dumas (1989) studies dynamic equilibrium in a production economy, where one investor has logarithmic while the other general CRRA preferences. Wang (1996) studies an exchange economy where one investor has logarithmic while the other square-root preferences. One notable exception is Bhamra and Uppal (2008), who study the effect of introducing non-redundant securities on the volatilities of asset returns in an exchange economy with CRRA investors not restricted to being logarithmic.} Despite recent developments in portfolio optimization, such as duality method of Cvitanic and Karatzas (1992), portfolio constraints are notoriously difficult to incorporate into general equilibrium analysis as well as portfolio choice when constrained investors have more general preferences inducing hedging demands which affect equilibrium parameters.

The assumption of logarithmic preferences is not innocuous and impedes the evaluation of the impact of constraints on stock prices and stock return volatilities, which is of particular importance during the times of financial crises when the regulators may impose additional portfolio restrictions on institutional investors such as pension funds in an attempt to limit their risk exposure. Thus, in economic settings with two logarithmic investors and single consumption good (e.g., Detemple and Murthy, 1997; Basak and Cuoco, 1998; Basak and Croitoru, 2000, 2006) stock prices and hence stock return volatilities are unaffected by constraints since the income and substitution effects perfectly offset each other. When the constrained investor is logarithmic, the volatility effects can only be studied in specific settings where the other (unconstrained) investor has different preferences (e.g., Gallmeyer and Hollifield, 2008), which requires further justification. To our best knowledge, our paper is the first to study the effect of constraints on stock return volatility in a continuous-time economy without relying on the assumptions that constrained investor is logarithmic and there are other sources of investors’ heterogeneity apart from portfolio constraints.

In this paper, we solve for the equilibrium in a continuous-time pure exchange economy with one consumption good and two heterogeneous investors facing portfolio constraints. Our solution method yields new insights on the impact of constraints on stock return volatilities and other equilibrium parameters. First, for general preferences and constraints we provide a characterization of interest rates and market prices of risk which highlight the role of constraints
and risk sharing, and in specific economic settings can explicitly be characterized in terms of empirically observable quantities such as stock return and consumption volatilities. Based on these results, we specialize to settings with two CRRA investors one of whom is unconstrained while the other faces portfolio constraints. Specifically, we first derive the equilibrium when the constrained investor faces an upper bound on the proportion of wealth invested in stocks, which is typical for some pension and hybrid mutual funds. Then, we study the impact of short-sale constraints on equilibrium when investors have different beliefs about mean dividend growth. The methodological contribution of the paper is a solution method that allows the computation of equilibrium in economies with constraints. Specifically, we derive stock price-dividend ratios, stock return volatilities and other parameters in terms of wealth-consumption ratios that can be computed numerically via a simple iterative procedure with fast convergence.

At the first step of our analysis when we allow for general preferences, we demonstrate that the riskless rates and market prices of risk are given by riskless rates and market prices of risk in an unconstrained economy plus additional terms that capture the effects of constraints and risk sharing. Moreover, in specific settings we obtain the expressions for interest rates and market prices of risk in terms of intuitive and empirically observable parameters such as stock return and consumptions volatilities. The tractability of our results allows to compare interest rates in constrained and unconstrained economies for a given allocation of consumption among investors and demonstrate that for various constraints they will be lower in constrained economies whenever both investors have the same prudence-risk aversion ratios.

Using the insights from the case with general preferences we show that when investors have (identical for simplicity) CRRA preferences, one of them faces an upper bound on the proportion of wealth invested in stocks, and dividends follow a geometric Brownian motion, the interest rates and market prices of risk can explicitly be expressed in terms of marginal utility ratios, their volatilities and the volatilities of stock returns. We completely characterize the equilibrium by computing these volatilities numerically for relative risk aversions greater than unity in order to generate an empirically plausible range of interest rates and market prices of risk. While in models with both investors being logarithmic price-dividend ratios and stock return volatilities are deterministic functions of time, in our setting these parameters depend on constrained investor’s consumption share which evolves stochastically. We demonstrate that tighter constraints increase price-dividend ratios and decrease stock return volatilities. One implication of this result is

\[ \text{Srinivas, Whitehouse and Yermo (2000) in a survey of pension fund regulations show that limits on both domestic and foreign equity holdings of pension funds are in place in a number of OECD countries such as Germany (30% on EU and 6% on non-EU equities), Switzerland (30% on domestic and 25% on foreign equities) and Japan (30% on domestic and 30% on foreign equities), among others. Even though US and UK pension funds are not subject to equity holdings restrictions there is a growing industry of hybrid mutual funds that commit to maintaining a significant fraction of their wealth in bonds (e.g., Coner, 2006). Moreover, our approach allows to study the impact of passive investors that hold a fixed fraction of their wealth in stocks. Samuelson and Zeckhouser (1988) document the popularity of this strategy using as an example the participants of popular TIAA/CREF retirement plan who choose a fraction of wealth to be invested in stocks and rarely change it due to “status quo bias”. Important special case is stock market non-participation which in year 2002 accounted for 50% of U.S. households (e.g., Guvenen, 2006).} \]
that imposing limits on the equity holdings of institutional investors by regulators reduces the stock return volatility, which is particularly high during financial crises and recessions (e.g., Schwert, 1989). Moreover, due to the dominance of income effect over substitution effect the price-dividend ratios turn out to be increasing while stock return volatilities decreasing functions of the constrained investor’s share in aggregate consumption. The instantaneous changes in this share of consumption are negatively correlated with the instantaneous dividend growth in the economy. Hence, our model implies that the constraints affect equilibrium parameters in an asymmetric way and decrease stock return volatilities in bad times more than in good times.

We also demonstrate that interest rates are decreasing while market prices of risk are increasing functions of the constrained investor’s share in aggregate consumption which evolves stochastically in our model. Positive shocks to this consumption share make the constrained investor more willing to smooth consumption and hence, to lend at lower rates which causes interest rates to fall. Moreover, when one investor is constrained, for the stock market to clear the other one should hold more stocks than in an unconstrained economy which causes market prices of risk to increase to compensate her for excessive risk taking. We demonstrate that due to additional risk taking unconstrained investor’s consumption is more volatile than that of a constrained investor, consistently with the literature (e.g., Mankiw and Zeldes, 1989; Malloy, Moskowitz, and Vissing-Jorgensen, 2008). Moreover for a given constrained investor’s consumption share tighter constraints imply lower interest rates and higher market prices of risk since the smoothing and risk-taking effects become more pronounced. To evaluate the economic impact of the constrained investor in the long run we compute probability density functions for her consumption share for different time horizons and demonstrate that for plausible parameters her consumption share, and hence the market impact, slowly declines in the course of time but is rather significant even after hundred years.

Finally, we extend our baseline analysis to economic settings with heterogeneous beliefs and multiple stocks. In both cases, for general preferences we derive expressions for interest rates and market prices of risk similar to those in the baseline model. In the case of heterogeneous beliefs we solve for equilibrium in a model where two investors have the same CRRA utilities and disagree about the growth of dividends in the economy. The optimist is unconstrained while the pessimist faces constraint on the proportion of wealth that can be invested in short positions in stocks. We demonstrate that tighter short-sale constraints imply higher price-dividend ratios since they increase the constrained investor’s demand for stocks. We also find that the volatility of stock returns in constrained economy can be both higher or lower than the volatility in an unconstrained economy depending on whether the latter is higher or lower than the volatility of dividend growth. This is because the short-sale constraints do not allow the investor to trade on her pessimism making her stockholding closer to what it would be in the case of homogeneous beliefs, and hence, the stock return volatility shifts towards volatility in an unconstrained homogeneous economy, given by the volatility of dividends.

Our solution method is based on the combination of the duality approach and dynamic pro-
gramming. First, following Cvitanic and Karatzas (1992) we derive optimal consumptions in terms of the state price densities in an equivalent unconstrained fictitious economies in which interest rates and market prices of risk are given by those in the original economy plus adjustment parameters that account for the difference in the investors’ behavior in constrained and unconstrained economies. Then, market clearing for consumption yields expression for equilibrium parameters in terms of the adjustments that can be derived in terms of instantaneous volatilities of stock returns and the ratios of marginal utilities of the two investors. Next, these volatilities and hence all the equilibrium parameters are explicitly characterized in terms of investors’ wealth-consumption ratios that satisfy a system of nonlinear Hamilton-Jacobi-Bellman equations of dynamic programming. We solve this system of equations numerically via a simple iterative procedure that requires solving a simple system of linear equations at each step.

There is a growing literature studying the dynamic equilibrium in continuous-time economies with heterogeneous investors and portfolio constraints assuming that constrained investors have logarithmic preferences. Basak and Cuoco (1998) consider a model in which one investor is unconstrained and guided by general CRRA utility while the other cannot invest in stock market and has logarithmic preferences. They derive riskless rates and market prices of risk in this economy and characterize all the equilibrium parameters explicitly when both investors are logarithmic. Detemple and Murthy (1997), Basak and Croitoru (2000, 2006) present equilibrium models with two logarithmic investors, heterogeneous beliefs and portfolio constraints to study various economic phenomena. Hugonnier (2008) considers a similar model and shows that under restricted participation the stock prices implied by market clearing may contain a bubble and exceed prices given by present-value formula while in the setting with multiple stocks the equilibrium might not be unique. In contrast to our work all the above papers do not find the impact of constraints on stock prices and their moments.

Dumas and Maenhout (2002) develop an approach with two central planners for solving incomplete-market equilibrium. However, in their analysis the variance-covariance matrix of returns is taken as given and hence they do not study the impact of constraints on volatility. Kogan, Makarov and Uppal (2007) derive equilibrium parameters in an economy with borrowing constraints when one investor is logarithmic while the other has general CRRA utility and find that all the moments of asset returns are deterministic and stock return volatilities are unaffected by constraints. When little borrowing is permitted they numerically find interest rates and market prices of risk as functions of wealth distributions but do not consider the volatilities of stock returns. Gallmeyer and Hollifield (2008) study the asset pricing with short-sale constraints in the presence of heterogeneous beliefs when the pessimist and optimist have logarithmic and CRRA utilities respectively. They study equilibrium parameters by employing Monte-Carlo simulations and derive conditions for stock return volatilities to be larger or lower than in the unconstrained case assuming that investors have the same share of aggregate wealth at the initial date. In contrast to their work, in our heterogeneous-beliefs setting constraints are more general and allow the investor to short a certain proportion of wealth and the volatilities are derived as
functions of constrained investor’s consumption share.

Bhamra (2007) analyzes the effect of liberalization on emerging markets’ cost of capital in a model with two logarithmic investors, two stocks and one consumption good. Pavlova and Rigobon (2008) and Schornick (2008) consider models with constrained logarithmic investors and two consumption goods in international finance framework and derive various asset-pricing implications assuming that investors face preference shocks. Longstaff (2008) two-asset economy where one of the assets is non-tradable for a certain period and logarithmic investors are heterogeneous in time discount parameter.

There are a number of papers that solve models with heterogeneous investors and portfolio constraints numerically in discrete time. Cuoco and He (2001) consider a model with general utilities and derive equilibrium asset prices in terms of stochastic weights of a representative investor’s utility which are obtained numerically from a nonlinear system of equations. Guvenen (2006) solves numerically a model with restricted market participation when investors are guided by recursive utilities. Chien, Cole and Lustig (2008) also in a discrete-time framework consider a model with non-participants, passive and active investors guided by CRRA preferences, where passive investors hold fixed portfolios while active ones adjust them each period. Gomes and Michaelides (2008) study numerically the equilibrium with incomplete markets and investors subject to fixed cost of stock market participation and by calibration generate high equity premium and match observed market participation rate. These works do not provide expressions for equilibrium parameters in terms of observable quantities as we do in this paper by employing considerable flexibility of continuous-time methods.

The remainder of the paper is organized as follows. In Section 2, we derive interest rates and market prices of risk for general utility under the assumption that the dual optimization problem has a solution and discuss their properties. In Section 3 we illustrate our solution method by computing the equilibrium in a model with two CRRA utilities when one investor is unconstrained while the other faces an upper bound on the fraction of wealth invested in stocks. Section 4 extends our baseline analysis to the settings with heterogeneous beliefs and multiple stocks. We also solve for equilibrium in a model with heterogeneous beliefs in which one of the investors faces short-selling constraints. Section 5 concludes, Appendix A provides the proofs and Appendix B provides further details for our numerical method.
2. General Equilibrium with Constraints

2.1. Economic Setup

We consider a continuous-time economy with one consumption good and infinite horizon. The uncertainty is represented by a filtered probability space \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)\), on which is defined a Brownian motion \(w\). All the stochastic processes that appear in the paper are adapted to \(\{\mathcal{F}_t, t \in [0, \infty)\}\), the augmented filtration generated by \(w\).

The investors trade continuously in two securities, a riskless bond in zero net supply with instantaneous interest rate \(r\) and a stock in a positive net supply, normalized to one unit. The stock is a claim to an exogenous strictly positive stream of dividends \(\delta\) following the dynamics

\[
d\delta_t = \delta_t[\mu_\delta dt + \sigma_\delta dw_t],
\]

where the dividend mean-return, \(\mu_\delta\), and volatility, \(\sigma_\delta\), are stochastic processes. The dividend process (1) and its moments are assumed to be well-defined, without explicitly stating the regularity conditions. We consider equilibria in which bond prices, \(B\), and stock prices, \(S\), follow processes

\[
\begin{align*}
    dB_t &= B_t r_t dt, \\
    dS_t + \delta_t dt &= S_t[\mu_t dt + \sigma_t dw_t],
\end{align*}
\]

where the interest rate \(r\), the stock mean return \(\mu\) and volatility \(\sigma\) are stochastic processes determined in equilibrium, and bond price at time 0 is normalized so that \(B_0 = 1\).

There are two investors in the economy. Investor 1 is endowed with \(s\) units of stock and \(-b\) units of bonds, while investor 2 is endowed with \(1-s\) units of stock and \(b\) units of bond. The investors choose consumption, \(c_i\), and an investment policy, \(\{\alpha_i, \theta_i\}\), where \(\alpha_i\) and \(\theta_i\) denote the fractions of wealth invested in bonds and stocks, respectively, and hence, \(\alpha_i + \theta_i = 1\). Investor \(i\)'s wealth process \(W\) evolves as

\[
    dW_{it} = \left[W_{it} \left(r_t + \theta_i(\mu_t - r_t)\right) - c_{it}\right] dt + W_{it} \theta_i \sigma_t dw_t,
\]

and her investment policies are subject to portfolio constraints

\[
\theta_i \in \Theta_i, \quad i = 1, 2,
\]

where \(\Theta_i = [\underline{\theta}_i, \overline{\theta}_i]\). We also assume that initial endowments of stocks are such that \(\theta_i\) at time 0 belong to sets \(\Theta_i\). Thus, the financial market in our economy is incomplete due to the presence of portfolio constraints (5).

Each investor \(i\) \((i = 1, 2)\) is guided by an expected utility over a stream of consumption \(c\). In particular, her dynamic optimization is given by

\[
\max_{c_i; \theta_i} E \left[ \int_0^\infty e^{-\rho t} u_i(c_{it}) dt \right],
\]
subject to the budget constraint (4), no-bankruptcy constraint $W_t \geq 0$ and portfolio constraints (5), for some discount parameter $\rho > 0$. The utility functions $u_i(c)$ are assumed to be increasing, concave, three times continuously differentiable, satisfying Inada’s conditions

$$\lim_{c \to 0} u_i'(c) = \infty, \quad \lim_{c \to \infty} u_i'(c) = 0, \quad i = 1, 2.$$  \hspace{1cm} (7)

By $A_{it}$ and $P_{it}$ we denote absolute risk aversion and prudence parameters of investor $i$, given by

$$A_{it} = -\frac{u''_i(c)}{u'_i(c)}, \quad P_{it} = -\frac{u'''_i(c)}{u''_i(c)},$$  \hspace{1cm} (8)

and assume that both are strictly positive for each investor.

Next, we define an equilibrium in this economy as a set of parameters $\{r_t, \mu_t, \sigma_t\}$ and of consumption and investment policies $\{c^*_1t, \alpha^*_1t, \theta^*_1t\}_{i=1}^2$ such that consumption and investment policies solve dynamic optimization problem (6) for each investor, given price parameters $\{r_t, \mu_t, \sigma_t\}$, and consumption and financial markets clear, i.e.,

$$c^*_1t + c^*_2t = \delta_t,$$

$$\alpha^*_1tW^*_1t + \alpha^*_2tW^*_2t = 0,$$

$$\theta^*_1tW^*_1t + \theta^*_2tW^*_2t = S_t,$$  \hspace{1cm} (9)

where $W^*_1t$ and $W^*_2t$ denote optimal wealths of investors 1 and 2 under optimal consumption and investment policies.

### 2.2. Characterization of Equilibrium

This Section characterizes the parameters of equilibria and studies their properties in economies with constrained investors. In particular, by employing the duality method of Karatzas and Cvitanic (1992), we recover expressions for interest rates and market prices of risk in equilibrium in terms of the parameters of equivalent fictitious unconstrained economies. These expressions are intuitive and highlight the impact of risk-sharing and attitude towards risk on equilibrium parameters. Moreover, they form a basis for an efficient methodology for computing equilibria, which we develop in Section 3.

We start by noting that since the market is incomplete due to the presence of portfolio constraints, a Pareto optimal allocation may not be feasible and hence, the ratio of the marginal utilities of consumption of the investors follows a stochastic process. This ratio can be interpreted as a stochastic weight in the construction of a representative-investor preferences in an equivalent economy, and serves as a state variable in terms of which the equilibrium can be characterized (e.g., Basak and Cuoco, 1998; Cuoco and He, 2001). By employing the methodology of Cvitanic and Karatzas (1992) we obtain optimal consumptions and then derive the equilibrium parameters from market clearing conditions. This approach is similar to the approach in Basak (2000), who
characterizes an equilibrium in an economy where investors have heterogeneous beliefs, but in contrast to our work are unconstrained. Cuoco (1997) studies consumption-portfolio choice of constrained investors, mainly at a partial equilibrium level, and extends the results of Cvitanic and Karatzas to the case of more general utility functions and forms of market incompleteness. He derives a CAPM in an economy with portfolio constraints but does not study interest rates and other parameters of equilibrium. Hugonnier (2008) characterizes equilibrium in the model where one investor has general utility and is unconstrained, while the second investor has logarithmic utility and faces portfolio constraints.

We start by characterizing optimal consumptions of constrained investors in a partial equilibrium in which the investment opportunities are taken as given and then obtain the interest rate, \( r \), and the market price of risk, \( \kappa \), from the consumption clearing condition. For each investor \( i \), following the approach of Cvitanic and Karatzas (1992), we characterize the optimality conditions for consumption by embedding our partial equilibrium economy into an equivalent fictitious complete-market economy with adjusted riskless rate \( r_{it} \) and market price of risk \( \kappa_{it} \) and state prices \( \xi_{it} \) evolving as

\[
d\xi_{it} = -\xi_{it}[r_{it}dt + \kappa_{it}dw_{it}].
\]

As demonstrated in Cvitanic and Karatzas, the riskless rate and the market price of risk in a fictitious economy are given by

\[
\begin{align*}
    r_{it} &= r_t + f_i(\nu_{it}^*), \\
    \kappa_{it} &= \kappa_t + \frac{\nu_{it}^*}{\sigma_t},
\end{align*}
\]

where \( \kappa = (\mu - r)/\sigma \) is a market price of risk in constrained economy, \( f_i(\nu) \) are support functions for the sets of portfolio constraints \( \Theta_i \), defined as

\[
f_i(\nu) = \sup_{\theta \in \Theta_i} (-\nu\theta),
\]

\( \nu_{it}^* \) and \( \nu_{it}^* \) solve so called dual optimization problem, defined in Cvitanic and Karatzas (1992), and lie in the effective domains for support functions, given by

\[
\Upsilon_i = \{ \nu \in \mathbb{R} : f_i(\nu) < \infty \}.
\]

Throughout this Section we assume that the solutions to dual optimization problems exist and since the fictitious economies are complete, the marginal utilities of optimal consumption are given by

\[
e^{-\rho t}u'_i(c_{it}^*) = \psi_i \xi_{it}, \quad i = 1, 2,
\]

for some constants \( \psi_i > 0 \). The first order conditions (14) and state prices (10) demonstrate that consumption and investment decisions of the constrained investor are equivalent to those of an unconstrained one, which faces interest rates and market prices of risk adjusted to account for the constraints. Moreover, optimality conditions in (14) allow to express consumptions \( c_{it}^* \) in terms of state prices in fictitious economies as follows:

\[
c_{it}^* = I_i(\psi_i e^{\rho t}\xi_{it}), \quad i = 1, 2,
\]
where $I_i(\cdot)$ denote inverse functions for marginal utilities $u'_i(\cdot)$.

The expressions for marginal utilities in (14) also imply that the ratio of investors’ marginal utilities, defined as

$$\lambda_t = \frac{u'_1(c_{1t}^*)}{u'_2(c_{2t}^*)},$$

is stochastic, and hence, the resulting allocation of aggregate consumption between investors is not Pareto-optimal in general. Basak and Cuoco (1998) and Cuoco and He (2001) demonstrate that the process $\lambda$ serves as a convenient state variable in terms of which the equilibrium parameters can be expressed. Moreover, in an equivalent complete-market economy with a representative investor, parameter $\lambda$ can be interpreted as a stochastic weight in the utility $u(c; \lambda)$ of a representative investor, given by

$$u(c; \lambda) = \max_{c_1 + c_2 = c} u_1(c_1) + \lambda u_2(c_2),$$

and follows a stochastic process

$$d\lambda_t = -\lambda_t [\mu_\lambda dt + \sigma_\lambda dw_t].$$

The parameters $\mu_\lambda$ and $\sigma_\lambda$ are determined in equilibrium and quantify the violation of Pareto-optimality in the economy.

Next we characterize the parameters of our economy in equilibrium in terms of adjustments $\nu^*_t$ from the market clearing in consumption. To determine the interest rate $r$ and market price of risk $\kappa$ we substitute optimal consumptions (15) into consumption clearing condition in (9), apply Itô’s Lemma to both sides and recover equilibrium parameters by matching the drift and volatility terms. Similarly, from optimality conditions (14), by applying Itô’s Lemma to equation (16) for $\lambda_t$ and comparing the result with the process for $\lambda_t$ in (18) we recover parameters $\mu_\lambda$ and $\sigma_\lambda$. The following proposition summarizes our results.

**Proposition 1.** If there exists an equilibrium, the riskless interest rate $r$, market price of risk $\kappa$, drift $\mu_\lambda$ and volatility $\sigma_\lambda$ of weighting process $\lambda$ that follows (18) are given by

$$r_t = \bar{r} - A_t \frac{f_1(\nu^*_1)}{A_{1t}} f_2(\nu^*_2) - \frac{A_t}{2A_{1t}^2 A_{2t}^2} \sigma_\lambda^2 - \frac{A_t^3}{A_{1t} A_{2t}} \left( \frac{P_{1t}}{A_{1t}} - \frac{P_{2t}}{A_{2t}} \right) \delta_t \sigma_\delta \sigma_\lambda,$$

$$\kappa_t = \bar{\kappa} - A_t \nu^*_1 \sigma_t - A_t \nu^*_2 \sigma_t,$$

$$\mu_\lambda = A_t \delta_t \sigma_\delta \sigma_\lambda + f_1(\nu^*_1) - f_2(\nu^*_2) - \frac{A_t}{A_{1t}} \nu_\lambda^2,$$

$$\sigma_\lambda = \frac{\nu^*_1 - \nu^*_2}{\sigma_t},$$

where $\bar{r}$ and is the riskless rate and $\bar{\kappa}$ is the market price of risk in an unconstrained economy, given by

$$\bar{r}_t = \rho + A_t \delta_t \mu_\delta - \frac{A_t}{2} \delta_t^2 \sigma_\delta^2, \quad \bar{\kappa}_t = A_t \delta_t \sigma_\delta \lambda.$$
$A_t$, $P_t$, and $A_t$ and $P_t$ are absolute risk aversions and prudence parameters of investor $i$ and a representative investor with utility (17), respectively.\(^3\)

Optimal consumptions $c_{it}^*$, wealths $W_{it}$, stock $S_t$ and optimal investment policies $\theta_{it}^*$ are given by

\[
c_{it}^* = g_i(\delta_t, \lambda_t),
\]

\[
W_{it}^* = \frac{1}{\xi_{it}} E_t \left[ \int_0^\infty \xi_{is} c_{is}^* ds \right],
\]

\[
S_t = W_{1t}^* + W_{2t}^*,
\]

\[
\theta_{it}^* = \frac{1}{\sigma_t} \left( W_{it}^* \left( \kappa_t + \frac{\nu_{it}^*}{\sigma_t} \right) + \phi_{it} \right),
\]

where functions $g_i(\delta_t, \lambda_t)$ are such that $c_{1t}^*$ and $c_{2t}^*$ satisfy consumption clearing in (9) and equation (16) for process $\lambda$, state prices $\xi_{it}$ follow processes (10) and $\phi_i$ are such that

\[
M_{it} \equiv E_t \left[ \int_0^\infty \xi_{is} c_{is}^* ds \right] = M_{i0} + \int_0^t \phi_{is} dw_s.
\]

Initial value $\lambda_0$ is such that budget constraints at time 0 are satisfied:

\[
s_1 s_0 + b_1 = W_{i0}^*.
\]

where $s_1 = s$, $s_2 = 1 - s$, $b_1 = -b$ and $b_2 = b$. Moreover, adjustments $\nu_{it}^*$ satisfy complementary slackness condition

\[
f_i(\nu_{it}^*) + \theta_{it}^* \nu_{it}^* = 0.
\]

Proposition 1 provides the characterization of equilibrium parameters in terms of adjustments $\nu_{it}^*$ in fictitious economy. Expression (19) decomposes interest rates $r$ into groups of terms that separate the effects of constraints and the inefficiency of risk sharing. The first term in (19) is the riskless rate in the unconstrained economy with a representative investor. The next two terms capture the effect of binding constraints on interest rates and tend to increase or decrease them depending on the sins of support functions $f_i(\nu)$. In particular, these terms are positive in economic settings with binding portfolio constraints when investors buy more bonds. This is due to the fact that the investors behave as if their subjective interest rates $r_{it}$ in their fictitious economy were higher than in the real one, and hence positive adjustments $f_i(\nu_{it}^*)$. Finally, the last two terms in expression (19) capture the effect of risk sharing, quantified by volatility $\sigma_{i\lambda}$.

The weight $\lambda$ acts as a state variable that gives rise to specific hedging demands that can push interest rates in either direction.

\(^3\)As demonstrated in Basak (2000), the risk aversion, $A$, and prudence, $P$, of the representative investor can be obtained from the following expressions:

\[
\frac{1}{A_t} = \frac{1}{A_{1t}} + \frac{1}{A_{2t}}, \quad \frac{P_t}{A_t^2} = \frac{P_{1t}}{A_{1t}^2} + \frac{P_{2t}}{A_{2t}^2}.
\]
Similarly, the expression (20) for the market price of risk is comprised of the market price of risk in an unconstrained economy (first term in (20)) and the effects of constraints (second and third terms in (20)). Expressions for the drift $\mu_\lambda$ and volatility $\sigma_\lambda$ parameters of the stochastic weighting process $\lambda$ in (21) demonstrate that this process, in general, is no longer a local martingale as in works assuming logarithmic constrained investor (e.g., Basak and Cuoco, 1998; Gallmeyer and Hollifield, 2008; Pavlova and Rigobon, 2008). Finally we observe that optimal consumptions, wealths, stock prices and investments can be obtained from expressions (23) – (26) when the parameters of equilibrium, and hence all state prices, are known.

The results in Proposition 1 can also be used to compute the equilibrium parameters numerically. On one hand, Proposition 1 expresses equilibrium parameters and investment policies in terms of adjustments $\nu_i^*$, and on the other, the adjustments can be obtained from the complementary slackness condition (28). Thus, finding adjustments becomes essentially a fixed point problem. Moreover, as demonstrated in Huang and Pages (1992), under certain conditions optimal wealths (24) satisfy linear PDEs with coefficients determined by equilibrium parameters while optimal policies (26) can be expressed in terms of derivatives of wealths $W^*_i$. Hence, the adjustments can be expressed in terms of derivatives of $W_i$ from conditions (28) and substituted back into the PDE for optimal wealths. Thus, the characterization of equilibrium reduces to solving a system of quasilinear PDEs which, as we demonstrate in Section 3, can efficiently be solved numerically for specific constraints.

### 2.3. Further Properties of Equilibrium

We here explore the implications of Proposition 1 by noting that in various economic settings the signs of adjustments $\nu_i^*$ and support functions $f_i(\nu)$ can easily be determined explicitly from the definitions of support functions and effective domains in (12) and (13). Moreover, the interest rates $r$ and market prices of risk $\kappa$ can be expressed in terms of empirically observed quantities, such as stock and consumption volatilities, thus providing empirical implications of the model.

Table 1 presents the effective domains and the signs of the support functions for plausible constraints and allows to analyze their effect on equilibrium parameters. For example, when investors face constraints on the proportion of wealth invested in stocks (case (d) in Table 1) the results in Proposition 1 and Table 1 imply that these constraints tend to decrease the interest rates and increase the market prices of risk relative to an unconstrained model if stock volatility $\sigma$ is strictly positive. Hence, these constraints work in the right direction for explaining the equity premium puzzle (e.g., Mehra and Prescott, 1985). The overall effect of constraints on interest rates is convoluted by the effect of risk sharing captured by the last two terms in the expression for interest rates (19). The following Corollary to Proposition 1 establishes simple sufficient conditions under which the interest rate $r$ will be lower than the interest rate $\bar{r}$ in a
Table 1
Effective Domains and Support Functions

<table>
<thead>
<tr>
<th>Case</th>
<th>Constraint</th>
<th>( \Upsilon )</th>
<th>( f(\nu) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>( \theta \in \mathbb{R} )</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(b)</td>
<td>( \theta = 0 )</td>
<td>( \mathbb{R} )</td>
<td>0</td>
</tr>
<tr>
<td>(c)</td>
<td>( \theta \leq \theta \leq \bar{\theta}, \bar{\theta} \leq 0 )</td>
<td>( \mathbb{R} )</td>
<td>+</td>
</tr>
<tr>
<td>(d)</td>
<td>( \theta \leq \bar{\theta}, \bar{\theta} &gt; 0 )</td>
<td>( \nu \leq 0 )</td>
<td>+</td>
</tr>
<tr>
<td>(e)</td>
<td>( \theta \geq \bar{\theta}, \bar{\theta} &lt; 0 )</td>
<td>( \nu \geq 0 )</td>
<td>+</td>
</tr>
<tr>
<td>(f)</td>
<td>( \theta \geq \bar{\theta}, \bar{\theta} &gt; 0 )</td>
<td>( \nu \geq 0 )</td>
<td>–</td>
</tr>
</tbody>
</table>

representative-investor unconstrained economy.

**Corollary 1.** If the utility functions and the allocation of consumption are such that \( P_1/A_1 = P_2/A_2 \) and the sets of portfolio constraints have positive support functions \( f_i(\nu) \) then the interest rate in a constrained economy, \( r \), is lower than in an unconstrained one, \( \bar{r} \), and the following upper bound for rate \( r \) holds:

\[
r_t \leq \bar{r}_t - \frac{A_t^2(P_{1t} + P_{2t})}{2A_t^2A_{2t}^2} \sigma_\lambda^2. \tag{29}
\]

The Corollary demonstrates that the inability to share risks contributes to the decrease of interest rates by creating hedging needs against fluctuating ratios of marginal utilities \( \lambda \). The condition that investors have the same prudence-risk aversion ratio is in particular satisfied when both investors have identical HARA preferences. For HARA utility function absolute risk aversion is given by \( -u''(c)/u'(c) = \gamma/(\gamma_0 + c) \). Differentiating both sides of this expression and then dividing by \( -u''(c)/u'(c) \) we obtain that \( P_t/A_t = 1 + \gamma \), and hence, the prudence-risk aversion ratio is the same for both investors.

Conveniently, in various economic settings interest rates and market price of risk can be expressed only in terms of the parameters of utility functions and empirically observed parameters. For example, when investor 1 is unconstrained and investor 2 faces a constraint allowing her to invest in stock no more than a certain fraction of wealth (case (d) of Table 1), it can be observed that parameters \( r \) and \( \kappa \) are given by:

\[
r_t = \bar{r}_t - \frac{A_t}{A_{2t}} \sigma_t \sigma_L t - \frac{A_t^3(P_{1t} + P_{2t})}{2A_t^2A_{2t}^2} \sigma_\lambda^2 - \frac{A_t^3}{A_{1t}A_{2t}} \left( P_{1t}/A_{1t} - P_{2t}/A_{2t} \right) \delta t \sigma_\delta \sigma_L t, \quad \kappa_t = \bar{\kappa}_t + \frac{A_t}{A_{2t}} \sigma_\lambda t, \tag{30}
\]

where stock return volatility \( \sigma \) can easily be obtained from the data, while the weighting process volatility \( \sigma_\lambda \) can be obtained in terms of utility parameters and the parameters of the consumption
processes for each investor. In particular, assuming that the consumption processes $c_i$ for each investor follow Itô’s processes

$$dc_{it} = c_{it}[\mu_{c_{it}}dt + \sigma_{c_{it}}d\omega_t],$$

(31)

applying Itô’s Lemma to the definition of weighting process $\lambda$ in (16) we find that

$$\sigma_{\lambda t} = A_{1t}c_{1t}\sigma_{c_{1t}} - A_{2t}c_{2t}\sigma_{c_{2t}}.$$  

(32)

In specific frameworks the volatilities of consumption growth can be estimated from the data. In particular, for the model with restricted participation ($\bar{\theta} = 0$) Malloy, Moskowitz and Vissing-Jorgensen (2008) estimate consumption volatilities of stock market participants and non-participants to be 3.6% and 1.4% respectively, while Mankiw and Zeldes (1991) and Guvenen (2006) show that the share of consumption of non-participants in aggregate consumption is 0.68. As a result, the expressions for $r$ and $\kappa$ in (30) can potentially be used for identifying the parameters of the utility functions of investors as well as for quantifying the impact of risk sharing inefficiencies on the interest rates and market prices of risk.

3. Equilibrium with Proportional Constraints

This Section applies the results of Section 2 to compute and analyze the equilibrium in a specific economic setting in which investor 1 is unconstrained while investor 2 faces a constraint allowing her to invest in stock no more than a certain fraction of wealth, typical for pension and hybrid mutual funds. For simplicity we assume that dividends follow a geometric Brownian motion and both investors have identical CRRA preferences. Using the results of Section 2, in Section 3.1 we present a simple solution method for finding an equilibrium in this economy, and in Section 3.2 we study the impact of constraints on the equilibrium. In our setting with fully rational investors we also study the survival of constrained investors in the long run and demonstrate that it takes a long time to eliminate their impact on financial markets.

3.1. Characterization and Computation of Equilibrium

In this Section we present a solution method which allows to compute the equilibrium in an efficient way. This method does not rely on a widely used assumption of a logarithmic constrained investor (e.g., Detemple and Murthy, 1997; Basak and Cuoco 1998; Basak and Croitoru, 2000, 2006; Kogan, Makarov and Uppal, 2003; Bhamra, 2007; Gallmeyer and Hollifield, 2008; Hugonnier, 2008; Pavlova and Rigobon, 2008; Schornick, 2008), which allows to derive the adjustments $\nu^*_i$ in fictitious economy explicitly, at the cost of investor’s myopia inherent in logarithmic preferences. In discrete time, Couco and He (2001), Guvenen (2006), Chien, Cole and Lustig (2008) and Gomes and Michaelides (2008) study the models with constrained heterogeneous investors numerically without assuming that constrained investor is logarithmic. In contrast to these works, by employing the flexibility of continuous-time finance we recover interest rates and
market prices of risk in terms of empirically observable parameters, which are further expressed in terms of wealth-consumption ratios of investors in an intuitive way.

Finding an equivalent unconstrained economy is a challenging problem which so far has only been solved for logarithmic investors (e.g., Cvitanic and Karatzas, 1992; Karatzas and Shreve, 1998) or CRRA investors but assuming constant investment opportunity sets (Tepla, 2001). We tackle this problem by first expressing the parameters of the fictitious economy in terms of the stochastic weighting process $\lambda_t$, and the volatilities of $\lambda_t$ and stock returns, which then are obtained in terms of the wealth-consumption ratios of investors that solve Hamilton-Jacobi-Bellman equations. Even though in equilibrium the coefficients of HJB equations themselves depend on the sensitivities of wealth-consumption ratios with respect to parameter $\lambda_t$, we demonstrate that the time-independent solutions can easily be obtained via an iterative procedure that at each step requires solving a simple system of linear algebraic equations.\(^5\)

Throughout Section 3 we assume for simplicity that dividends follow a geometric Brownian motion
\[ d\delta_t = \delta_t[\mu_d dt + \sigma_d dw_t], \tag{33} \]
both investors have CRRA utilities with relative risk aversion parameter $\gamma$, given by
\[ u_i(c) = \frac{c^{1-\gamma} - 1}{1 - \gamma}, \quad i = 1, 2, \tag{34} \]
and solve optimization problem in (6) subject to budget constraint (4), no-bankruptcy constraint $W_t \geq 0$, and portfolio constraint $\theta \leq \bar{\theta}$ for investor 2, while investor 1 is unconstrained. By $J_i(W_t, \lambda_t, t)$ we denote the indirect utility function of investor $i$.

For convenience, we solve the optimization problem of a constrained investor 2 in an equivalent fictitious unconstrained economy in which she maximizes her objective function (6) subject to budget constraint
\[ dW_{2t} = \left[ W_{2t} \left( r_t + f_2(\nu^*_2t) + \theta_2t(\mu_t - r_t + \nu^*_2t) \right) - c_{2t} \right] dt + W_{2t}\theta_{2t}\sigma_t dw_t, \tag{35} \]
where $\nu^*_2t$ and $f_2(\nu^*_2t)$ are adjustments to stock mean returns and riskless rates respectively. By applying dynamic programming we find that the indirect utility functions should satisfy the following HJB equations:
\[ 0 = \max_{c_t, \theta_t} \left\{ e^{-\rho t} \frac{c^{1-\gamma}}{1 - \gamma} - \frac{\partial J_{it}}{\partial t} + \left[ W_t \left( r_t + f_i(\nu^*_it) + \theta_it(\mu_t - r_t + \nu^*_it) \right) - c_{it} \right] \frac{\partial J_{it}}{\partial W_t} - \lambda_t \mu_t \frac{\partial J_{it}}{\partial \lambda_t} + \frac{1}{2} \left[ W_t^2 \theta_{it}^2 \sigma_t^2 \frac{\partial^2 J_{it}}{\partial W_t^2} - 2W_t \theta_{it} \lambda_t \sigma_t \sigma_{\lambda t} \frac{\partial^2 J_{it}}{\partial W_t \partial \lambda_t} + \lambda_t^2 \sigma_{\lambda t}^2 \frac{\partial^2 J_{it}}{\partial \lambda_t^2} \right] \right\}, \tag{36} \]
\(^5\)The duality approach offers convenient and intuitive framework for solving equilibrium models with constraints. However, the sufficient conditions for the solvability of dual problems given in Cvitanic and Karatzas (1992) are difficult to satisfy in various framework. The footnote in the proof of Proposition 2 in Appendix A points out that the results of this Section can alternatively be obtained without relying on the duality approach by directly working with the HJB equation for the constrained investor in the original constrained economy.

\(^6\)The assumption that investors have identical risk aversions is made for simplicity. More general case can be considered along the same lines.
with transversality condition $E_t[J_{1T}] \to 0$ as $T \to \infty$, which guarantees the convergence of the integral in investors’ optimization (6). We next obtain expressions for $\nu^*_i$ and $f_i(\nu^*_i)$ without solving the dual problem by noting that since investor 1 is unconstrained $\nu^*_1 = 0$ (case (a) in Table 1) while $\nu^*_2$ can be obtained from equilibrium expression for $\sigma_M$ in (21), and hence,

$$
\nu^*_1 = 0, \quad f_1(\nu^*_1) = 0, \quad \nu^*_2 = -\sigma_1 \sigma_M, \quad f_2(\nu^*_2) = \bar{\theta} \sigma_1 \sigma_M.
$$

(37)

The HJB equations in (36) are standard except for the fact that the equation for investor 2 is in terms of parameters of fictitious economy, which allows to formulate her problem as an unconstrained one. We conjecture that the indirect utility functions are given by

$$
J_i(W, \lambda, t) = e^{-\rho t} \frac{W^{1-\gamma}}{1-\gamma} H_i(\lambda, t)^\gamma, \quad i = 1, 2.
$$

(38)

Then, from the first order conditions with respect to consumption we obtain

$$
c^*_it = \frac{W_{it}}{H_{it}}, \quad i = 1, 2,
$$

(39)

where $H_{it}$ is a shorthand notation for $H_i(\lambda, t)$, and hence, functions $H_{it}$ can be interpreted as wealth-consumption ratios of investors 1 and 2. By substituting indirect utility functions (38) into HJB equations it can be verified that wealth-consumption ratios satisfy the following PDEs:

$$
\frac{\partial H_{it}}{\partial t} + \frac{\lambda_{it}^2 \sigma_M^2}{2} \frac{\partial^2 H_{it}}{\partial \lambda_{it}^2} - \lambda_{it} \left( \mu_{it} + \frac{1-\gamma}{\gamma} \kappa_{it} \sigma_M \right) \frac{\partial H_{it}}{\partial \lambda_{it}} + \left( \frac{1-\gamma}{2\gamma} \kappa_{it}^2 + (1-\gamma) r_{it} - \rho \right) \frac{H_{it}}{\gamma} + 1 = 0, \quad i = 1, 2,
$$

(40)

where $r_{it}$ and $\kappa_{it}$ denote riskless rate and price of risk in a fictitious economy and are defined in (11) in terms of adjustments given in (37). Moreover, optimal investment policies for investors 1 and 2 are given by

$$
\theta_{it} = \frac{1}{\gamma \sigma_t} \left( \kappa_{it} - \gamma \sigma_M \frac{\partial H_{it}}{\partial \lambda_{it}} \right), \quad i = 1, 2.
$$

(41)

Since the horizon is infinite we will look for time-independent and bounded solutions of equations (40). Moreover, throughout this Section we assume that $\bar{\theta} \leq 1$. We note that if investor 2 faces borrowing constraint, i.e. $\bar{\theta} \geq 1$, the equilibrium coincides with the equilibrium in an unconstrained economy in which the investors, being identical, optimally choose $\theta^*_it = 1$. When $\bar{\theta} < 1$ the constraint is always binding since otherwise, having identical preferences, both investors should find optimal to invest $\theta_i < 1$ which contradicts market clearing conditions.\footnote{Formally, if the constraint does not bind, from the complementary slackness condition (28) it follows that $\nu^*_2t = 0$. Hence, $\sigma_M = 0$ and $\mu_M = 0$ and the economy will permanently remain in a Pareto-efficient unconstrained equilibrium. As a result, since the investors have identical preferences, they will choose $\theta^*_it = 1$ which violates constraint $\theta_{2t} \leq \bar{\theta} < 1$ and leads to contradiction.}

Conveniently, since the fictitious economy is complete, the equations for wealth-consumption ratios in (40) are linear if volatilities $\sigma_\lambda$ and $\sigma$ are known. However, in equilibrium these parameters themselves depend on functions $H_i$. In particular volatility $\sigma_\lambda$ can be obtained from the fact that the constrained investor’s constraint always binds, giving rise to equation

$$
\theta_{2t} = \bar{\theta},
$$
while the stock return volatility $\sigma$ can be obtained by applying Itô’s Lemma to stock price $S_t = R_t \delta_t$, where $R_t$ is a shorthand notation for the stock price-dividend ratio which can be expressed in terms of wealth-consumption ratios from the market clearing conditions in (9). The following Proposition 2 summarizes our results and provides a characterization of equilibrium in terms of wealth-consumption ratios.

**Proposition 2.** If there exists an equilibrium, the riskless interest rate $r$, market price of risk $\kappa$ and drift $\mu_\lambda$ of weighting process $\lambda$ that follows (18) are given by

$$ r_t = \bar{r} - \frac{\lambda_t^{1/\gamma}}{1 + \lambda_t^{1/\gamma}} \theta \sigma_t \sigma_\lambda - \frac{1 + \gamma}{2\gamma} \frac{\lambda_t^{1/\gamma}}{(1 + \lambda_t^{1/\gamma})^2} \sigma_\lambda^2, \quad (42) $$

$$ \kappa_t = \bar{\kappa} + \frac{\lambda_t^{1/\gamma}}{1 + \lambda_t^{1/\gamma}} \sigma_\lambda, \quad (43) $$

$$ \mu_\lambda = \gamma \sigma_\delta \sigma_\lambda - \frac{1}{1 + \lambda_t^{1/\gamma}} \sigma_\lambda^2, \quad (44) $$

where $\bar{r}$ and is the riskless rate and $\bar{\kappa}$ is the market price of risk in an unconstrained economy, given by

$$ \bar{r} = \rho + \gamma \mu_\delta - \frac{\gamma(1 + \gamma)}{2} \sigma_\delta^2, \quad \bar{\kappa} = \gamma \sigma_\delta. \quad (45) $$

Optimal consumptions $c^*_i$, wealths $W^*_i$, stock price-dividend ratio $R$ and optimal investment policies $\theta^*_t$ are given by

$$ c^*_1t = \frac{1}{1 + \lambda_t^{1/\gamma}} \delta_t, \quad c^*_2t = \frac{\lambda_t^{1/\gamma}}{1 + \lambda_t^{1/\gamma}} \delta_t, \quad (46) $$

$$ W^*_1t = H_{1t} \frac{1}{1 + \lambda_t^{1/\gamma}} \delta_t, \quad W^*_2t = H_{2t} \frac{\lambda_t^{1/\gamma}}{1 + \lambda_t^{1/\gamma}} \delta_t, \quad (47) $$

$$ R_t = H_{1t} \frac{1}{1 + \lambda_t^{1/\gamma}} + H_{2t} \frac{\lambda_t^{1/\gamma}}{1 + \lambda_t^{1/\gamma}}, \quad (48) $$

$$ \theta^*_1t = \frac{1}{\gamma \sigma_\delta} \left( \kappa_t - \gamma \sigma_\lambda \frac{\partial H_{1t}}{\partial \lambda_t} \frac{\lambda_t}{H_{1t}} \right), \quad \theta^*_2t = \bar{\theta}, \quad (49) $$

while the volatilities of the stock returns, $\sigma$, and weighting process, $\sigma_\lambda$, are given by

$$ \sigma_t = \sigma_\delta - \sigma_\lambda \frac{\partial R_t}{\partial \lambda_t} \frac{\lambda_t}{R_t}, \quad \sigma_\lambda = \frac{(1 - \bar{\theta}) \gamma \sigma_\delta}{\frac{1}{1 + \lambda_t^{1/\gamma}} + \gamma \frac{\partial H_{2t}}{\partial \lambda_t} \frac{\lambda_t}{H_{2t}} - \bar{\theta} \gamma \frac{\partial R_t}{\partial \lambda_t} \frac{\lambda_t}{R_t}} \quad (50) $$

where wealth-consumption ratios $H_{1t}$ and $H_{2t}$ satisfy equations (40). Moreover, the initial value $\lambda_0$ for the weighting process (18) solves equation

$$ (1 - \bar{\theta}) H_2(\lambda_0, 0) \frac{\lambda_0^{1/\gamma}}{1 + \lambda_0^{1/\gamma}} \delta_0 = b. \quad (51) $$
The expressions for riskless rate $r$ and price of risk $\kappa$ in Proposition 2 are in terms of the of volatilities $\sigma$ and $\sigma_\lambda$, as well as parameter $\lambda^{1/\gamma}$ which in our economic setting can be interpreted as the ratio of consumptions of investors 2 and 1, as it follows from the expressions in (46). As in the general case in Proposition 1, interest rates are comprised of three terms, where the first term is a riskless rate in an unconstrained economy, while the second and third terms highlight the impact of constraints and risk sharing. Moreover, the effect of risk sharing, as captured by volatility $\sigma_\lambda$, can be expressed in terms of consumption volatilities. In particular, from expression (32) it follows that

$$\sigma_\lambda = \gamma (\sigma_{c1t} - \sigma_{c2t}).$$  \hspace{1cm} (52)$$

It will be demonstrated later that volatility $\sigma_\lambda$ is positive in equilibrium since investor 1 is more exposed to risk and hence her consumption growth is more volatile.

Proposition 2 also provides expressions for equilibrium volatilities $\sigma$ and $\sigma_\lambda$ in terms of the elasticities of wealth-consumption and price-dividend ratios with respect to weighting process $\lambda$, given by

$$\epsilon_{H2t} = \frac{\partial H_{2t}}{\partial \lambda_t} \hat{H}_{2t}, \quad \epsilon_{Pt} = \frac{\partial R_t}{\partial \lambda_t} \hat{R}_t.$$  \hspace{1cm} (53)$$

From the expression for the volatility $\sigma_\lambda$ in (50) it follows that $\sigma_\lambda$ is decreasing in elasticity $\epsilon_{H2}$ and increasing in $\epsilon_{P}$. The effect of elasticities in (53) on volatility $\sigma_\lambda$ then determines their impact on all the other parameters in equilibrium.

To understand the effect of these elasticities on volatility $\sigma_\lambda$ we observe that elasticity $\epsilon_{H2}$ is proportional to the stock hedging demand of investor 2 given by the second term in the expression for optimal policy (41). Moreover, since $\sigma_\lambda$ is positive, it follows from this expression that higher elasticity $\epsilon_{H2}$ tends to decrease optimal investment in stock. Thus, higher $\epsilon_{H2}$ makes the stock less attractive and the investor’s ideal, although infeasible, unconstrained stockholding decreases and moves closer to $\bar{\theta}$ which causes $\sigma_\lambda$ to fall since the risks are shared in a more optimal way. Moreover, as follows from the expressions for volatilities (50) the increase in elasticity $\epsilon_{P}$ tends to decrease stock volatility $\sigma$ since the dividends and weighting process are negatively correlated. Hence, if volatility $\sigma$ decreases, the stock becomes more attractive for both investors. However, since investor 2 is constrained, her ideal unconstrained holding moves further away from her constrained holding $\bar{\theta}$ and hence the risks are shared in a less optimal way and $\sigma_\lambda$ increases.

Proposition 2 also allows to explicitly identify the coefficients of PDEs (40) for wealth-consumption ratios $H_i$, which depend on equilibrium parameters identified in expressions (42)–(50). Moreover, it appears that the coefficients themselves depend on ratios $H_i$ and hence, we obtain a system of quasilinear PDEs the solutions to which completely characterize the equilibrium. We next solve for time-independent solutions of PDEs (40) which correspond to the infinite horizon case. To solve the equations (40), we first fix a large horizon parameter $T$, choose a starting value for $H_i(\lambda, T)$ and then solve the equation backwards using a modification of Euler’s finite-difference method until the solution converges to a stationary one. This approach is
similar to the subsequent iterations method for solving Bellman equations in discrete time (e.g., Ljungqvist and Sargent, 2004) when at a distant time in the future the value function is set equal to some function (usually zero) and then the value functions at earlier dates are obtained by solving equations backwards.

Since weight $\lambda$ varies from zero to infinity, we first perform a change of variable and rewrite the PDEs (40) as well as the equilibrium parameters in Proposition 2 in terms of constrained investor’s share in aggregate consumption, given by

$$y_t = \frac{\lambda_t^{1/\gamma}}{1 + \lambda_t^{1/\gamma}}. \tag{54}$$

Variable $y$ takes values in the interval $[0, 1]$ and provides one-to-one mapping to variable $\lambda$. The solution of PDEs in terms of new variable we label as $\tilde{H}_i(y, t)$. Assuming that the solutions to new PDEs are continuous and twice continuously differentiable, setting in those equations $y = 0$ and $y = 1$ we recover boundary conditions for $\tilde{H}_i(y, t)$. Next, we replace the derivatives by their finite-difference analogues letting the time and state variable increments denote $\Delta t \equiv T/M$ and $\Delta y \equiv 1/N$, where $M$ and $N$ are integer numbers. Solving the equation backwards, sitting at time $t$ we compute the coefficients of finite-difference analogues of PDEs (40) using the solutions $\tilde{H}_i(y, t + \Delta t)$ obtained from the previous step $t + \Delta t$. As a result, the coefficients of equations for $\tilde{H}_i(y, t)$ are known at time $t$ and hence $\tilde{H}_i(y, t)$ can be found by solving a system of linear finite-difference equations with three-diagonal matrix. Appendix B provides further details of the numerical algorithm. The wealth-consumption ratios then allow us to derive all the parameters of equilibrium.

**Remark 1 (Bond prices).** Proposition 2 allows to derive bond prices from the condition that constrained investor’s total investment in stocks and bonds should equal her wealth at all times, that is, $\bar{\theta}W_{2t} + bB_t = W_{2t}^\ast$. Hence, the results in Proposition 2 imply that

$$B_t = \frac{1 - \bar{\theta}}{b} H_{2t} \frac{\lambda_t^{1/\gamma}}{1 + \lambda_t^{1/\gamma}} \delta_t.$$  

**Remark 2 (Existence of Equilibrium).** Second panel in the second row of Figure 2 shows that wealth-consumption ratio $H_2$ is a monotone function of $y$, and hence, also of $\lambda^{1/\gamma}$, and is bounded by positive constants from below and from above. As a result, the function on the left-hand side of the equation for $\lambda_0$ in (51) is monotone and maps the interval $[0, \infty)$ into $[C_0, C_1]$, where $C_0$ and $C_1$ are some constants, and hence, if $b \in [C_0, C_1]$ there always exists the unique solution $\lambda_0$ that satisfies the equation. Given the existence of $\lambda_0$ and the solutions to HJB equations (40), expressions (42)–(50) fully characterize the equilibrium in the economy.\(^8\)

\(^8\)We also assume here that the initial endowments are such that investor 2 binds on her constraint at time 0. If the endowments are such that $\theta_{2,0} < \bar{\theta}$ then the constraint will start to bind over next instant.
Figure 1: Price-Dividend Ratios and Ratios of Stock Return and Dividend Growth Volatilities.

The figure plots the price-dividend ratios $R$ and the ratios of stock return and dividend growth volatilities $\sigma/\sigma_\delta$ as functions of constrained investor’s consumption share, $y$. Dividend mean growth rate $\mu_\delta = 1.8\%$ and volatility $\sigma_\delta = 3.2\%$ are taken from the estimates in Campbell (2003), based on consumption data in 1891–1998, while risk aversion and time discount are set to $\gamma = 3$ and $\rho = 0.01$ respectively.

3.2. Analysis of Equilibrium

We now study the impact of constraints on price-dividend ratios, stock return volatilities, interest rates, market prices of risk and wealth-consumption ratios. Important implication of our model is that in contrast to models with logarithmic investors the constraints do affect the price-dividend ratios and stock return volatilities. Figure 1 presents price-dividend ratios and the ratios of stock return and dividend growth volatilities while Figure 2 shows interest rates, market prices of risk and wealth-consumption ratios under plausible parameters.$^9$

The graphs on Figure 1 demonstrate the prediction of our model that tighter constraints (lower $\bar{\theta}$) increase the price-dividend ratios $R$ and decrease stock return volatilities $\sigma$. The practical implication of this result is that imposing limits on equity holdings of institutional investors by regulators reduces the stock return volatility which is particularly high during financial crises and recessions (e.g., Schwert, 1989). Moreover, since pension funds in a number of OECD countries face equity holding restrictions (e.g., Srinivas, Whitehouse and Yermo, 2000) our model predicts that the countries with tighter restrictions should have smaller ratio of the stock market volatility and the dividend volatility.

Figure 1 also shows that ratios $R$ are increasing while volatilities $\sigma$ are decreasing functions of constrained investor’s consumption share $y$, and hence, in our model the price-dividend ratios

$^9$In particular, the parameters for the dividend process ($\mu_\delta = 1.8\%, \sigma_\delta = 3.2\%$) are taken from the estimates in Campbell (2003), based on consumption data in 1891–1998 years, and the discounting parameter is set to $\rho = 0.01$. We choose the relative risk aversion parameter $\gamma = 3$ to generate a plausible range for riskless rates and market prices of risk.
Figure 2: Parameters of Equilibrium with Constraints.

The figure plots interest rates $r$, market prices of risk $\kappa$, and wealth-consumption ratios $H_1$ and $H_2$ as functions of constrained investor’s consumption share in aggregate consumption, $y$. Dividend mean growth rate $\mu = 1.8\%$ and volatility $\sigma = 3.2\%$ are taken from the estimates in Campbell (2003), based on consumption data in 1891–1998, and time discount are set to $\gamma = 3$ and $\rho = 0.01$ respectively.

are negatively correlated with the stock return volatilities. This is due to the negative correlation between the instantaneous changes in the dividend growth $d\delta/\delta$ and consumption share $dy$ resulting from the fact that a negative shock to dividends shifts relative consumption to the constrained investor. Since the stock price is the product of price-dividend ratio and the dividend, and price-dividend ratio is increasing and convex in consumption share $y$, higher $y$ increases the volatility of ratio $R$ and hence decreases the volatility of stock returns by canceling the fluctuations of dividends.\footnote{In our model the instantaneous volatility of stock returns is lower than that of dividend growth and hence there is no excess volatility. Bhamra and Uppal (2008) demonstrate a significant excess volatility in a complete-market exchange economy with CRRA investors that differ in risk aversions. Thus, excess volatility is likely to be present in the extension of our model to the case where investors have different risk aversions.} Moreover, the effect is stronger when $\theta$ is lower, since in that
case price-dividend ratio is more volatile due to higher sensitivity to changes in $y$, and hence better cancels the volatility in dividend.

Since the instantaneous changes in consumption share $y$ and the dividend growth are negatively correlated, for convenience we will call variables positively correlated with $y$ as countercyclical and variables negatively correlated with $y$ as procyclical. The graphs on Figure 1 demonstrate that the price-dividend ratios are countercyclical and the volatilities of stock return are procyclical in the presence of constraints while the empirical results in Schwert (1989) and Campbell and Cochrane (1999) suggest that the price-dividend ratios are procyclical and stock return volatilities are countercyclical. Campbell and Cochrane (1999) and Chan and Kogan (2002) present the models with habit formation and “catching up with the Joneses” preferences, respectively, that explain the patterns in the data. Our model predicts that the portfolio constraints cause the volatility to fall more in bad times than in good times and hence, tighter constraints can even up the differences between the volatilities in booms and recessions.

In order to provide sharper intuition for the behavior of price-dividend ratios and hence for stock return volatilities we need first to analyze the impact of constraints on interest rates, market prices of risk and wealth-consumption ratios. The first panel in the first row of Figure 2 presents interest rates and demonstrates that in line with the results of Section 2 interest rates in constrained economy are lower than in an unconstrained one for a given consumption share $y$. Moreover, they become lower with tighter constraints and are decreasing functions of constrained investor’s share of consumption. Intuitively, constrained investor invests more in bonds driving their prices down. Moreover, constraints prevent her to share risks efficiently and smooth consumption over time. As a result, when her current consumption is high the price of future consumption increases making her more willing to lend at a lower interest causing interest rates to fall.

The second panel in the first row of Figure 2 shows market prices of risk. The prices of risk are higher in constrained than in unconstrained economies and increase as constraint becomes tighter. When investor 2 invests only a fraction $\bar{\theta} < 1$ of her wealth in the stock, for the markets to clear investor 1 should be leveraged so that $\theta^*_1 > 1$. This, however, implies that investor 1 should be more exposed to risk as the constraint on investor 2 tightens, and hence, the market price of risk should be higher. Moreover, market price of risk also increases with constrained investor’s consumption share $y$ since in those states in which investor 1 consumes less and possesses less wealth, she is more risk averse and requires market prices of risk to increase for the stock market to clear. And hence, the market prices of risk are countercyclical.

The panels in the second row of Figure 2 feature wealth-consumption ratios of the unconstrained and constrained investors. Since in our example risk aversion $\gamma > 1$ the income effect dominates the substitution effect for both investors their consumptions tend to increase with income. Hence, since for given $\bar{\theta}$ interest rate decreases as a function of consumption share $y$, constrained investor receives less interest and decreases her consumption relative to wealth. As a result, her wealth-consumption ratio should be an increasing function of $y$. The effect is stronger
for smaller constraint $\tilde{\theta}$ since in that case larger fraction of wealth is invested in bonds.

Similarly, for low interest rates unconstrained investor should consume more since she is a net borrower. However, when consumption share $y$ is low enough, wealth-consumption ratio of unconstrained investor is slightly increasing up to some point since she expects interest rates to increase in the future due to the fact that the distribution of constrained investor’s share in aggregate consumption $y$ decreases and shifts to the left, which we will show later. The price-dividend ratio is a weighted average of investors’ wealth-consumption ratios given by (48). For large consumption shares $y$ it takes constrained investor with larger weight and vice versa for low $y$. As a result, it appears to be an increasing function of $y$, and is higher for smaller $\tilde{\theta}$. The volatility of stock returns then turns out to be lower when constraints are tighter, and is a decreasing function of consumption share $y$, as discussed above.

Our results also allow to obtain the expressions for consumption growth volatilities of investors, which also capture the effect of risk sharing between them. The expressions for the volatilities can be obtained by applying Itô’s Lemma to optimal consumptions (46) and are reported in the following Corollary 2.

**Corollary 2.** The optimal consumption growth volatilities of unconstrained and constrained investors are given by

$$
\sigma_{c1t} = \sigma_\delta + \frac{1}{\gamma \left( 1 + \lambda t^{1/\gamma} \right)} \sigma_{\lambda t}, \quad \sigma_{c2t} = \sigma_\delta - \frac{1}{\gamma \left( 1 + \lambda t^{1/\gamma} \right)} \sigma_{\lambda t}.
$$

(55)

It can be shown in our example that the volatility $\sigma_\lambda$ is positive, and hence, consumption volatilities in (55) imply that unconstrained investor, being exposed to more risk, has larger volatility of consumption than the constrained one. Basak and Cuoco (1998) show in the case of restricted participation and $\gamma = 1$ that the volatility $\sigma_{c2}$ of constrained investor is zero and all the risk is borne by the unconstrained investor. However, in our case with $\gamma > 1$ volatility $\sigma_{c2}$ is greater than zero, as also in the data for non-stockholders (e.g., Malloy, Moskowitz, Vissing-Jorgensen, 2008).

We also note that since lower $\tilde{\theta}$ decreases interest rates and increases market prices of risk the case of restricted participation which corresponds to $\tilde{\theta} = 0$ better explains the levels of observed interest rates and market prices of risk. In particular, in our model with plausible parameters described above, when we set $y = 0.7$ (e.g., Mankiw and Zeldes, 1991; Guvenen, 2006) we obtain $r = 4.8\%$ and $\kappa = 28\%$, while the volatilities of individual consumptions are $\sigma_{c1} = 9\%$ and $\sigma_{c2} = 0.7\%$. The estimates in Campbell (2003) show that $r = 2\%$ and $\kappa = 36\%$, while Malloy, Moskowitz, and Vissing-Jorgensen (2008) show that $\sigma_{c1} = 3.6\%$ and $\sigma_{c2} = 1.4\%$. Thus, our model implies riskless rates and market prices of risk sufficiently close to those in the data for such a simple model. However, it significantly overestimates the volatility of unconstrained investor’s consumption.
Figure 3: Probability Density Functions for Constrained Investor’s Share in Aggregate Consumption.

The figure presents probability density functions for constrained investor’s share in aggregate consumptions, $y$, for time horizons equal to 10 and 100 years respectively. Dividend mean growth rate $\mu_\delta = 1.8\%$ and volatility $\sigma_\delta = 3.2\%$ are taken from the estimates in Campbell (2003), based on consumption data in 1891–1998, while risk aversion and time discount are set to $\gamma = 3$ and $\rho = 0.01$ respectively.

Finally, we address the question of how the constraints affect the distribution of consumption between the investors. So far we compared the parameters of equilibria with different constraint $\bar{\theta}$ for a given level of consumption share $y$. This comparison does not account for the fact that share $y$ itself depends on $\bar{\theta}$. Figure 3 shows probability density functions of $y$ for different constraints $\bar{\theta}$ for time horizons equal to ten and hundred years respectively. The probability densities imply that consumption share $y$ tends to decline, and hence, the impact of constrained investor becomes smaller in the course of time even though it is still significant even after hundred years. As discussed in Hong, Kubik and Stein (2004) stock market participation depends on person-specific characteristics such as social integrations and education. Thus, specializing to the case of restricted participation ($\bar{\theta} = 0$) our model demonstrates that these characteristics lead to gradual, although slow, elimination of non-stockholders’ impact on financial markets via natural selection.11

Remark 3 (Case $\gamma < 1$). We compute the equilibrium assuming that $\gamma > 1$. For $\gamma < 1$ the wealth-consumption ratio $H_{12}$ becomes infinite as $y$ approaches unity and the boundary conditions cannot be derived in the same way as for $\gamma > 1$. We do not consider the case $\gamma < 1$

\[11\] In unconstrained economic settings the survival of unconstrained investors has been studied in Kogan, Ross, Wang and Westerfield (2004), Berrada (2006), Dumas, Kurshev and Uppal (2008) and Yan (2008), among others. The results in the latter three works suggest that it takes a long time to eliminate the impact of irrational investors that have wrong beliefs about mean dividend growth rates. Hugonnier (2008) considers survival of constrained logarithmic investor and demonstrates that their impact can quickly be eliminated. However, in his calibration the volatility of dividends is 20% while we set this parameter to the volatility of aggregate consumption 3.2% taken from Campbell (2003). When in the calibration we choose $\gamma = 1$ and $\sigma_\delta = 20\%$ consistently with Hugonnier our results also imply fast elimination of constrained investor’s impact.
in this work given that plausible risk aversions are well above unity.

4. Extensions and Ramifications

In this Section we demonstrate that our model is extendable to different alternative economic settings. Section 4.1 extends the results of Section 2 to the case of heterogeneous beliefs and provides a numerical solution to the model with CRRA investors with heterogeneous beliefs when one of them faces short-sale constraints. Section 4.2 demonstrates that the results of Section 2 generalize to the environments with multiple assets.

4.1. Heterogeneous Beliefs Formulation

We now consider an economy in which investors are constrained and have different beliefs about mean dividend growth rate in the economy. We first generalize the results of Section 2 and derive expressions for the parameters of equilibrium in terms of adjustments in fictitious economy and the differences in beliefs. Then, we specialize to a framework in which both investors have identical CRRA preferences and the pessimist faces short-sale constraints. We solve this model numerically by employing the approach of Section 3 and discuss some properties of the equilibrium parameters.

Basak (2000, 2005) derives expressions for equilibrium parameters for general utility functions in the economy in which investors face heterogeneous belief but does not study the impact of constraints as we do in this work. Our model is also related to the model of Gallmeyer and Hollifield (2008) in which the pessimist has logarithmic preferences and faces short-sale constraints while the investor with general CRRA is optimistic and unconstrained. By contrast, our model does not rely on the assumption of a logarithmic constrained investor.

The economic setting is similar to that of Section 2. In particular, investors trade in two securities, a riskless bond and stock, and dividends follow process (1). They agree on dividends, bond and stock prices and the dividend growth rate volatility $\sigma_\delta$ but disagree on the growth rate $\mu_\delta$. Throughout this Section we will be using superscript $i$ to denote quantities on which investors disagree, while by subscript $i$ investor-specific quantities on which there is no disagreement.

Investors update their beliefs $\mu^i_{\delta t}$ in a Bayesian fashion:

$$\mu^i_{\delta t} = E^i[\mu_{\delta t}|\mathcal{F}^i_\delta], \quad i \in \{o,p\},$$

(56)

where $E^i[.]$ denotes expectation under subjective probability measure of investor $i$ and $\mathcal{F}^i_\delta$ is the augmented filtration generated by $\delta_t$. Both investors have different priors $\mu^o_{\delta 0}$ and investor 1 is optimistic ($i = o$) while investor 2 is pessimistic ($i = p$) about the dividend growth. From the point of view of investor $i$ the dividends and stock prices follow the processes

$$d\delta_t = \delta_t[\mu^i_{\delta t} + \sigma_{\delta t}dw^i_t],$$

(57)

$$dS_t + \delta_t dt = S_t[\mu^i_{t}dt + \sigma_t dw^i_t],$$

(58)

24
where \( w_t^i \) denotes Brownian motions under the *subjective probability measure* of investor \( i \).

From the filtering theory in Lipster and Shiryayev (1977) it follows that Brownian motions \( w_t^i \) are given by

\[
dw_t^i = \frac{\mu_s - \mu_{\delta t}^i}{\sigma_{\delta}} dt + dw_t, \quad i \in o,p. \tag{59}
\]

By \( \Delta \mu_{\delta t} \) we denote the *disagreement process* defined as

\[
\Delta \mu_{\delta t} = \frac{\mu_o^{\delta t} - \mu_p^{\delta t}}{\sigma_{\delta}}. \tag{60}
\]

Moreover, if dividends follow geometric Brownian motion (33) and investors’ initial priors are normally distributed with parameters

\[
\mu_s^i \sim N(\hat{\mu}_s^i, \hat{\sigma}_s^i),
\]

then \( \mu_{\delta t}^i \) is also normally distributed and the processes for \( \mu_{\delta t}^i \) and \( \Delta \mu_{\delta t} \) are given by

\[
d\mu_{\delta t}^i = \frac{\hat{\sigma}_i^2}{\sigma_{\delta}} dw_t^i, \tag{61}
\]

\[
d\Delta \mu_{\delta t} = \frac{\hat{\sigma}_{\delta t}^p}{\sigma_{\delta}} \Delta \mu_{\delta t} dt + \frac{\hat{\sigma}_s^{\delta t} - \hat{\sigma}_{\delta t}^p}{\sigma_{\delta}} dw_t^i, \tag{62}
\]

where

\[
\hat{\sigma}_{\delta t}^i = \frac{\hat{\sigma}_s^i \sigma_{\delta t}^2}{\sigma_{\delta}^2 + \sigma_{\delta t}^2}. \tag{63}
\]

The budget constraint for each investor is given by (4) in which Brownian motion \( w \) and stock mean-return \( \mu \) are replaced by investor’s subjective Brownian motion \( w_t^i \) and mean-return \( \mu_t^i \). Each investor solves optimization problem (6) in which now expectation operator \( E[\cdot] \) is replaced by operator \( E^i[\cdot] \), under investor’s subjective beliefs, subject to the budget constraint, no-bankruptcy constraint \( W_t \geq 0 \) and portfolio constraints (5).

The equilibrium in this economy is a set of parameters \( \{r_t, \mu_t^o, \mu_t^p, \sigma_t^i\} \) and of consumption and investment policies \( \{c_t^i, \alpha_t^i, \theta_t^i\}_{i \in \{o,p\}} \) which solve investor \( i \)'s dynamic optimization problem and satisfy market clearing conditions in (9).

As in Section 2, the parameters of equilibrium are characterized in terms of adjustments \( \nu_t^i \) and support functions \( f_i(\nu_t^i) \). We first characterize investor’s marginal utilities in terms of state prices that follow processes as in (10) but with Brownian motions under subjective probability measures. Then, we introduce the ratio of their marginal utilities \( \lambda \), which follows the process

\[
d\lambda_t = -\lambda_t[\mu_{\delta t}^i dt + \sigma_{\lambda t} dw_t^i]. \tag{64}
\]

By employing market clearing conditions we obtain the parameters of equilibrium. Proposition 3 summarizes our results.
Proposition 3. If there exists an equilibrium, the riskless interest rate \( r \), perceived market prices of risk \( \kappa \), drifts \( \mu_i \) and volatility \( \sigma_i \) of weighting process (64) are given by

\[
\begin{align*}
    r_t &= \bar{r}_t - \frac{A_{it}}{A_{ot}} f_o(\nu_{ot}^s) - \frac{A_{it}}{A_{pt}} f_p(\nu_{pt}^s) - \frac{A^3_t (P_{ot} + P_{pt})}{2A_{ot}^2A_{pt}^2} \sigma_M^2 - \frac{A^3_t}{A_{ot}A_{pt}} \left( \frac{P_{ot}}{A_{ot}} - \frac{P_{pt}}{A_{pt}} \right) \delta_t \sigma_{St} \sigma_M \\
    &= -\frac{A^2_t}{A_{pt}} \delta_t \sigma_{St} \Delta \mu_{St} + \frac{A^2_t}{A_{ot}A_{pt}} \sigma_M \Delta \mu_{St},
\end{align*}
\]

(65)

where \( \bar{r} \) and is the riskless rate and \( \bar{k} \) is the market price of risk in an unconstrained economy populated by optimists, given by

\[
\begin{align*}
    \bar{r}_t &= \rho + A_{it} \delta_t \mu_{St} - \frac{A_{it} P_t}{2} \delta_t^2 \sigma_{St}^2, \\
    \bar{k}_t &= A_{it} \delta_t \sigma_{St},
\end{align*}
\]

(69)

\( A_{it}, P_{it}, \) and \( A_t \) and \( P_t \) are absolute risk aversions and prudence parameters of investor \( i \) and a representative investor with utility (17), respectively.

Expressions for optimal consumption \( c_{it}^* \) and stock price \( S_t \) are as in Proposition 1. Optimal wealths \( W_{it}^* \) and optimal investment policies \( \theta_{it}^* \) are given by expressions (24) and (26) in which expectation operator \( E[\cdot] \) and market prices of risk \( \kappa \) are replaced by subjective operator \( E^s[\cdot] \) and price of risk \( \kappa^s \). Initial value \( \lambda_0 \) for weighting process (64) is such that budget constraint at time zero (27) is satisfied. Moreover, adjustments \( \nu_{it}^s \) satisfy complementary slackness conditions (28), as in Proposition 1.

The expressions for interest rates in Proposition 3 demonstrate the impact of heterogeneous beliefs on interest rates and subjective market prices of risk. In particular, the expression for interest rates have additional terms (last two terms in (65)) which demonstrate the direct effect of disagreement process \( \Delta \mu_{St} \). Since the disagreement process is positive, its impact depends on the sign of volatility \( \sigma_i \). Moreover, the expression for volatility \( \sigma_i \) in (68) demonstrates that this parameter itself depends on \( \Delta \mu_{St} \) since the disagreement affects the efficiency of the risk sharing, quantified by \( \sigma_i \). Unlike the setup of Section 2, investors now disagree also on the market prices of risk, which are given in (66).

We now consider a modification of the model in Section 3 in which now investors have heterogeneous beliefs about the dividend growth rate. In particular, investor 1 is optimistic and unconstrained while investor 2 is pessimistic and faces constraints that impose a limit on the short-sales \( \theta \geq 0 \), where \( \theta < 0 \). For simplicity, as in Yan (2008) we assume that investors do not update their beliefs and believe that dividends follow a GBM

\[
d \delta_t = \delta_t \left[ \bar{i}_t \sigma_{St} dt + \sigma_{St} dw_{St}^i \right],
\]

(70)
and their difference in beliefs we denote by $\Delta \mu_\delta$. This assumption can further be justified by noting that under plausible parameters it takes very long time for the beliefs to converge.\textsuperscript{12}

As in Section 3 we characterize the equilibrium in terms of the wealth-consumption ratios of investors which satisfy HJB equations (40) in which the drift parameter $\mu_\lambda$ is now investor-specific and should be replaced by $\mu_i^\lambda$. Our results are summarized in Proposition 4.

**Proposition 4.** If there exists an equilibrium, the riskless interest rate $r$, perceived market price of risk $\kappa_i$ and drifts $\mu_i^\lambda$ of weighting process $\lambda$ that follows (18) are given by

$$
\begin{align*}
\bar{r}_t &= \bar{r} + \frac{\lambda_t^{1/\gamma}}{1 + \lambda_t^{1/\gamma}} \theta \sigma_t (\Delta \mu_\delta - \sigma_{\lambda t}) - \frac{1 + \gamma}{2} \frac{\lambda_t^{1/\gamma}}{(1 + \lambda_t^{1/\gamma})^2} \sigma_{\lambda t}^2 \\
\kappa_i^o &= \bar{\kappa} + \frac{\lambda_t^{1/\gamma}}{1 + \lambda_t^{1/\gamma}} \sigma_{\lambda t}, \quad \kappa_i^p = \bar{\kappa} - \frac{1}{1 + \lambda_t^{1/\gamma}} \sigma_{\lambda t}, \\
\mu_i^\lambda &= \gamma \sigma_i \sigma_{\lambda t} - \frac{1}{1 + \lambda_t^{1/\gamma}} \sigma_{\lambda t}^2 - \Delta \mu_\delta \kappa_i^p + \theta \sigma_t (\Delta \mu_\delta - \sigma_{\lambda t}), \quad \mu_i^\lambda = \mu_i^\lambda - \Delta \mu_\delta \sigma_{\lambda t},
\end{align*}
$$

where $\bar{r}$ and $\bar{\kappa}$ is the riskless rate and market price of risk in an unconstrained economy populated by optimists, given by

$$
\begin{align*}
\bar{r} &= \rho + \gamma \mu_\delta^o - \frac{(1 + \gamma)}{2} \sigma_\delta^2, \quad \bar{\kappa} = \gamma \sigma_\delta.
\end{align*}
$$

Optimal consumptions $c_i^*$, wealths $W_i^*$, stock price-dividend ratio $R$ and optimal investment policies $\theta_i^*$ are given by

$$
\begin{align*}
c_i^* &= \frac{1}{1 + \lambda_t^{1/\gamma}} \delta_t, \quad c_i^* = \frac{\lambda_t^{1/\gamma}}{1 + \lambda_t^{1/\gamma}} \delta_t, \\
W_i^* &= H_{ot} \frac{1}{1 + \lambda_t^{1/\gamma}} \delta_t, \quad W_i^* = H_{pt} \frac{\lambda_t^{1/\gamma}}{1 + \lambda_t^{1/\gamma}} \delta_t, \\
R_t &= H_{ot} \frac{1}{1 + \lambda_t^{1/\gamma}} + H_{pt} \frac{\lambda_t^{1/\gamma}}{1 + \lambda_t^{1/\gamma}}, \\
\theta_i^* &= \frac{1}{\gamma \sigma_t} (\kappa_i^o - \gamma \sigma_{\lambda t} \frac{\partial H_{ot}}{\partial \lambda_t} \frac{\lambda_t}{H_{ot}}), \quad \theta_i^* = \frac{1}{\gamma \sigma_t} (\kappa_i^p - \gamma \sigma_{\lambda t} \frac{\partial H_{pt}}{\partial \lambda_t} \frac{\lambda_t}{H_{pt}}),
\end{align*}
$$

\textsuperscript{12}In particular, assuming that investors have the same variances for the prior belief, $\hat{\sigma}_{\delta i} = \hat{\sigma}_{\delta 0}$, equations for the disagreement and estimation error processes in (62) and (63) imply that

$$
\Delta \mu_{\delta t} = \Delta \mu_{\delta 0} \left( \frac{\sigma_i^2}{\hat{\sigma}_{\delta 0}^2 + \sigma_\delta^2} \right)^{\gamma \sigma}.
$$

Assuming further that $\hat{\sigma}_{\delta 0} = \sigma_\delta$ and taking $\sigma_\delta = 3.2\%$, as in Campbell (2003), we obtain that it takes 100 years for the disagreement $\Delta \mu_\delta$ to decrease by 20%.
Figure 4: Price-Dividend Ratios and Ratios of Stock Return and Dividend Growth Volatilities with Heterogeneous Beliefs.

The figure presents price-dividend ratios $R$ and the ratios of stock return and dividend growth volatilities $\sigma / \sigma_\delta$ as functions of constrained investor’s consumption share $y$ in the presence of heterogeneous beliefs. The optimist has correct beliefs $\mu^o_\delta = \mu_\delta$ while pessimist believes that $\mu^p_\delta = 0.5 \mu_\delta$. Dividend mean growth rate $\mu_\delta = 1.8\%$ and volatility $\sigma_\delta = 3.2\%$ are taken from the estimates in Campbell (2003), based on consumption data in 1891–1998, while risk aversion and time discount are set to $\gamma = 3$ and $\rho = 0.01$ respectively.

while the volatilities of the stock returns, $\sigma$, and weighting process, $\sigma_\lambda$, are given by

$$
\sigma_t = \sigma_\delta - \sigma_\lambda R_t \frac{\lambda_t}{\bar{R}_t}, \quad \sigma_\lambda = \min\left\{ \frac{(1 - \bar{\theta}) \gamma \sigma_\delta}{1 + \lambda_t^{1/\gamma} + \gamma \frac{\partial H_{pl}}{\partial \lambda_t} \lambda_t - \bar{\theta} \gamma \frac{\partial R_t}{\partial \lambda_t} \lambda_t}, \Delta \mu_\delta \right\},
$$

(79)

where wealth-consumption ratios $H_{ot}$ and $H_{pt}$ satisfy equations (40). Moreover, the initial value $\lambda_0$ for the weighting process (18) solves equation

$$
sH_p(\lambda_0, 0) \frac{\lambda_0^{1/\gamma}}{1 + \lambda_0^{1/\gamma}} \delta_0 - (1 - s)H_o(\lambda_0, 0) \frac{1}{1 + \lambda_0^{1/\gamma}} \delta_0 = b.
$$

(80)

Proposition 4 characterizes equilibrium parameters in terms of wealth-consumption ratios and highlights the effects of heterogeneous beliefs and short-sale constraints. Crucial difference from the results of Proposition 2 is that now market prices of risk (72) and the drifts of weighting process (73) are investor-specific due to investors’ disagreement on the dividend growth. Moreover, the short-sale constraint will not always be binding in equilibrium since when constrained investor’s share of aggregate consumption is large she becomes more willing to smooth consumption over time and invests more in stock.

By calibrating our economy to the plausible parameters we find that constraints have little effect on riskless rates, while market prices of risk are investor-specific. Therefore, we here focus
on price-dividend ratios and stock return volatilities which are presented on Figure 4 for different levels of $\theta$. The dotted lines correspond to quantities in unconstrained economy ($\theta = -\infty$) which are computed using explicit formula for stock prices in terms of weighting process $\lambda$, available in Yan (2008). We assume that the optimist has correct beliefs about mean dividend growth while pessimist underestimates it by 40%. The first picture on Figure 1 demonstrates that tighter short-selling constraints (higher $\theta$) increase price-dividend ratios since constrained investor has higher demand for stock. By contrast, when the constraints are relaxed, pessimistic investor’s demand for stocks drops further down, depressing the stock prices.

The second picture on Figure 4 demonstrates that as short-sale constraints become tighter the volatility of stock returns decreases for small consumption shares $y$, increases for medium $y$, and is almost unchanged for values of $y$ close to unity when the constraint does not bind. Intuitively, short-sale constraints limit the ability of the pessimist to trade on her pessimism and hence her stockholding look as if she had smaller disagreement with the unconstrained investor. As a result, the economic parameters should become closer to the values in the unconstrained economy without disagreement. In particular, stock return volatilities should move closer to the volatility of dividends $\sigma_\delta$, which we observe on Figure 4. This effect can also be formally demonstrated observing that adjustment parameters for unconstrained and constrained investors are such that $\nu^*_o = 0$ (case (a) in Table 1) and $\nu^*_p \geq 0$ (case (e) in Table 1), and hence the volatility $\sigma_\lambda$ given by (68) decreases towards zero since the volatility of stock returns $\sigma$ is positive. Then, from the expression for volatility $\sigma$ in (79) it follows that the difference between $\sigma$ and dividend growth volatility $\sigma_\delta$ becomes smaller.

In a similar model with a logarithmic constrained pessimist Gallmeyer and Hollifield (2008) find that the stock return volatility increases when the unconstrained optimist has risk aversion $\gamma > 1$ and each investor is initially endowed with 50% of the market portfolio. By contrast with their work we present the analysis of price-dividend ratios and stock return volatilities as functions of both the pessimist’s consumption share $y$ and the tightness of the short-sale constraint. Moreover, we show that the volatility $\sigma$ can decrease with tighter constraints even though the economic magnitude of this effect is small. Finally, our numerical method relies only on solving linear algebraic equations at each step rather than employing Monte-Carlo simulations as in their work.

4.2. Multiple Stock Formulation

We now demonstrate that the baseline analysis of Section 2 with single stock can easily be generalized to the case of multiple stocks. The uncertainty is now generated by a multi-dimensional Brownian motion $w = (w_1, ..., w_N)$. The investors trade in a riskless bond and $N$ stocks in a positive net supply, normalized to unity, each of which is a claim to an exogenous strictly positive stream of dividends $\delta_n$ following the dynamics

$$d\delta_{nt} = \delta_{nt}[\mu_{\delta_n}dt + \sigma_{\delta_n}^T dw_t], \quad n = 1, ..., N,$$

(81)
where \( \mu_{\delta_n} \) and \( \sigma_{\delta_n} \) are stochastic processes. We consider equilibria in which bond prices, \( B \), and stock prices, \( S \), follow processes

\[
\begin{align*}
   dB_t &= B_tr_tdt \\
   dS_{nt} + \delta_{nt}dt &= S_{nt}[\mu_{nt}dt + \sigma_{nt}^\top dw_t], \quad n = 1, \ldots, N.
\end{align*}
\]

We let \( \mu \equiv (\mu_1, \ldots, \mu_N)^\top \) denote the vector of stock mean returns and \( \sigma \equiv (\sigma_1, \ldots, \sigma_N)^\top \) the volatility matrix, assumed invertible, with each component measuring the covariance between the stock return and Brownian motion \( w_n \). By \( \delta \) we denote the process for aggregate dividend, \( \delta = \delta_1 + \delta_2 + \ldots + \delta_N \), which follows the process

\[
d\delta_t = \delta_t[\mu_{\delta_t} + \sigma_{\delta_t}^\top dw_t],
\]

where

\[
\begin{align*}
   \mu_{\delta_t} &= \frac{\delta_{1t}}{\delta_t} \mu_{\delta_1} + \ldots + \frac{\delta_{Nt}}{\delta_t} \mu_{\delta_N}, \\
   \sigma_{\delta_t} &= \frac{\delta_{1t}}{\delta_t} \sigma_{\delta_1} + \ldots + \frac{\delta_{Nt}}{\delta_t} \sigma_{\delta_N}.
\end{align*}
\]

Investor 1 is endowed with \( s_n \) units of stock \( n \) and \( -b \) units of bond, while investor 2 is endowed with \( 1 - s_n \) units of stock \( n \) and \( b \) units of bond. Investor \( i \)'s wealth process \( W \) follows

\[
dW_{it} = [W_{it}(r_{it} + \theta_{it}^\top (\mu_t - r_t)) - c_{it}] dt + W_{it}\theta_{it}^\top \sigma_t dw_t,
\]

and her investment policies are subject to portfolio constraints

\[
\theta_i \in \Theta_i, \quad i = 1, 2,
\]

where \( \Theta_i \) is a closed convex set in \( \mathbb{R}^N \) and \( \theta = (\theta_1, \ldots, \theta_N)^\top \) is the vector of wealth proportions invested in the \( N \) stocks. Each investor \( i \) solves her dynamic optimization (6) subject to budget constraint (85), no-bankruptcy constraint \( W_t \geq 0 \) and portfolio constraints (86).

Following the approach of Section 2 we first embed the optimization problem for each investor into an equivalent fictitious complete-market economy in which stock prices evolve as

\[
d\xi_{it} = -\xi_{it}[r_{it}dt + \kappa_{it}^\top dw_t].
\]

Assuming that dual problems in Cvitanic and Karatzas (1992) have solutions we obtain that riskless rates \( r_{it} \) and market prices of risk \( \kappa_{it} \) in fictitious economy are given by

\[
r_{it} = r_t + f_i(\nu_{it}^*), \quad \kappa_{it} = \kappa_t + \sigma_t^{-1} \nu_{it}^*,
\]

where \( \kappa \) is the market price of risk in the original economy, \( f_i(\nu) \) are support functions for the sets \( \Theta_i \), defined as

\[
f_i(\nu) = \sup_{\theta \in \Theta_i} (-\nu^\top \theta),
\]

\( \nu_{1t}^* \) and \( \nu_{2t}^* \) solve duality optimization problem in Cvitanic and Karatzas (1992) and belong to the effective domains for support functions, given by

\[
\Upsilon_i = \{ \nu \in \mathbb{R}^N : f_i(\nu) < \infty \}.
\]
Proposition 5 characterizes the equilibrium in terms of the adjustments $\nu^*_it$ and $f(\nu^*_it)$ in fictitious economies and the parameters of the process for the ratio of marginal utilities of consumption, $\lambda_t$, which evolves as

$$d\lambda_t = -\lambda_t[\mu_\lambda dt + \sigma^\top_\lambda dw_t].$$  \hspace{1cm} (91)

**Proposition 5.** If there exists an equilibrium, the riskless interest rate $r$, market price of risk $\kappa$, drift $\mu_\lambda$ and volatility $\sigma_\lambda$ of weighting process $\lambda$ that follows (91) are given by

$$r_t = \bar{r}_t - \frac{A_t}{A_{1t}}f_1(\nu^*_it) - \frac{A_t}{A_{2t}}f_2(\nu^*_it) - \frac{A_t^2}{2A_{1t}A_{2t}}\sigma_\lambda^T\sigma_\lambda - \frac{A_t^3}{A_{1t}A_{2t}}\left(P_{it} - P_{2t}\right)\delta_t\sigma^T_\delta\sigma_\lambda, \hspace{1cm} (92)$$

$$\kappa_t = \bar{\kappa}_t - \frac{A_t}{A_{1t}}\sigma^{-1}_\lambda \nu^*_it - \frac{A_t}{A_{2t}}\sigma^{-1}_\lambda \nu^*_{it}, \hspace{1cm} (93)$$

$$\mu_\lambda = A_t\delta_t\sigma^T_\delta\sigma_\lambda + f_1(\nu^*_it) - f_2(\nu^*_it) - \frac{A_t}{A_{1t}}\nu^*_it \sigma_\lambda, \hspace{1cm} \sigma_\lambda = \sigma^{-1}_\lambda (\nu^*_it - \nu^*_{it}), \hspace{1cm} (94)$$

where $\bar{r}$ and is the riskless rate and $\bar{\kappa}$ is the market price of risk in an unconstrained economy, given by

$$\bar{r}_t = \rho + \frac{A_t}{A_{1t}}\delta_t\mu_\lambda - \frac{A_t}{2}\frac{P_{it}}{\sigma^T_\delta\sigma_\delta}, \hspace{1cm} \bar{\kappa}_t = A_t\delta_t\sigma_\delta, \hspace{1cm} (95)$$

$A_{it}$, $P_{it}$, and $A_t$ and $P_t$ are absolute risk aversions and prudence parameters of investor $i$ and a representative investor with utility (17), respectively. Optimal consumptions $c^*_it$, wealths $W^*_it$ and optimal investment policies $\theta^*_it$ are given by

$$c^*_it = g_i(\delta_t, \lambda_t), \hspace{1cm} (96)$$

$$W^*_it = \frac{1}{\xi^{it}}E_t\left[\int_0^\infty \xi_{is}c^*_is ds\right], \hspace{1cm} (97)$$

$$\theta^*_it = \sigma^{-1}_\lambda \left(W^*_it(\kappa_t + \sigma^{-1}_\lambda \nu^*_it) + \phi^*_it\xi^T_{it}\right), \hspace{1cm} (98)$$

where functions $g_i(\delta_t, \lambda_t)$ are such that $c^*_it$ and $c^*_it$ satisfy consumption clearing in (9) and equation (16) for process $\lambda$, state prices $\xi^{it}$ follow processes (10) and $\phi^*_it$ are such that

$$M_{it} \equiv E_t\left[\int_0^\infty \xi_{is}c^*_is ds\right] = M_{i0} + \int_0^t \phi^T_{is} dw_s. \hspace{1cm} (99)$$

Initial value $\lambda_0$ is such that budget constraints at time 0 are satisfied:

$$s_{i1}S_{10} + ... + s_{in}S_{N0} + b_i = W^*_{i0}. \hspace{1cm} (99)$$

where $s_{1i} = s_n$, $s_{2n} = 1 - s_n$, $b_1 = -b$ and $b_2 = b$. Moreover, adjustments $\nu^*_it$ satisfy complementary slackness condition

$$f_i(\nu^*_it) + \theta^*_it \nu^*_it = 0. \hspace{1cm} (100)$$
The expression for interest rates (92) can again be decomposed into three groups of terms that represent riskless rate in an unconstrained economy, the impact of constraints and the effect of risk sharing. The last term in (92) also shows that in the case of heterogeneous utility functions the interest rates depend on the covariance between aggregate dividend and weighting process $\lambda$, captured by $\sigma_\delta^T \sigma_\lambda$. The expression for equilibrium interest rates also allows to formulate a simple sufficient condition under which the equilibrium interest rates in the constrained economy are lower than in the unconstrained one.

**Corollary 3.** If the utility functions and the allocations of consumption are such that $P_1/A_1 = P_2/A_2$ and the sets of portfolio constraints $\Theta_i$ contain the origin, i.e. $0 \in \Theta_i$, then the interest rate in a constrained economy, $r$, is lower than in an unconstrained one, $\bar{r}$, and the following upper bound for rate $r$ holds:

$$r_t \leq \bar{r}_t - \frac{A_1^2 (P_1 t + P_2 t)}{2 A_1^2 t^2} \sigma_\lambda^T \sigma_\lambda.$$

The expressions for the market price of risk now reflect the impact of multiple constraints. By contrast with the single stock case, market clearing conditions can only determine the aggregate value of all stocks and not the values of individual ones. Moreover, as demonstrated in Hugonnier (2008) if the weighting process is not a martingale then there might be multiple equilibria with different stock prices but unique riskless rates and market prices of risk. The application of the methodology developed in Section 3 for finding equilibria in a multi-stock economy we leave for future research.

5. **Conclusion**

Despite numerous applications of dynamic equilibrium models with heterogeneous investors facing portfolio constraints, little is known about the equilibrium when we depart from the assumption of logarithmic preferences. In various frameworks we provide explicit expressions for interest rates and market prices of risk in terms of endogenous but empirically observable quantities such as the instantaneous volatilities of stock returns and consumptions as well as risk aversions and prudence parameters. We then consider an economic setting where one investor is unconstrained while the other faces upper bound on the proportion that can be invest in stocks, and both investors have identical CRRA utilities. We completely characterize the equilibrium in terms of investors’ wealth-consumption ratios satisfying a pair of differential equations that we solve numerically by employing a simple iterative algorithm. We demonstrate that tighter constraints lead to lower interest rates and stock return volatilities and higher market prices of risk and price-dividend ratios. We also find that the impact of constrained investor diminishes in the course of time but is still significant even after hundred years. Our approach is then extended to the case
of heterogeneous beliefs and multiple assets. Given the tractability of our analysis we believe that our approach for finding equilibria in economies with constraints may find applications in various models with heterogeneous investors and incomplete financial markets as well as in solving portfolio choice problems with constraints at a partial equilibrium level.
Appendix A: Proofs

Proof of Proposition 1. First, we obtain a system of equations for parameters of the fictitious economy by substituting the expressions for optimal consumption (15) into consumption clearing condition in (9), applying Itô’s Lemma to both sides and matching the coefficients. Noting from the properties of inverse functions that

\[ I'_i(e^\rho_t \xi_{it}) = \frac{1}{u'_i(c^*_it)}, \quad I''_i(e^\rho_t \xi_{it}) = -\frac{u''_i(c^*_it)}{u'_i(c^*_it)} \left( \frac{1}{u'_i(c^*_it)} \right)^2, \]

we obtain the following equations

\begin{align*}
\frac{r_t - \rho}{A_t} + \frac{f_1(\nu_{1t}^*)}{A_{1t}} + \frac{f_2(\nu_{2t}^*)}{A_{2t}} + \frac{1}{2} \left( P_{1t} \left( \frac{\kappa_{1t}}{A_{1t}} \right)^2 + P_{2t} \left( \frac{\kappa_{2t}}{A_{2t}} \right)^2 \right) &= \delta_t \mu_{st}, \quad (A.1) \\
\frac{\kappa_{1t}}{A_{1t}} + \frac{\kappa_{2t}}{A_{2t}} &= \delta_t \sigma_{st}. \quad (A.2)
\end{align*}

By applying Itô’s Lemma to both sides of the definition of \( \lambda \) in (16) and noting that marginal utilities \( u'_i(c^*_it) \) are given by (14), matching the terms we obtain the drift \( \mu_\lambda \) and volatility \( \sigma_\lambda \) of the weighting process (18):

\[ \mu_\lambda = \sigma_\lambda \kappa_{2t} + f_1(\nu_{1t}^*) - f_2(\nu_{2t}^*), \quad \sigma_\lambda = \kappa_{1t} - \kappa_{2t}. \tag{A.3} \]

Taking into account the definition of \( \kappa_{it} \) in terms of adjustments in (11) from equations (A.1)–(A.3) we obtain expressions (19)–(21) in Proposition 1. Analogously, it can be shown that in the unconstrained economy the interest rate is given by (22).

Optimal consumptions \( c^*_it \) are obtained from consumption clearing and the equation for weight \( \lambda \) in (16). Expressions for optimal wealths and optimal policy (24) and (26) follow from the results in Cox and Huang (1989), Huang and Pages (1992) and Karatzas and Shreve (1998), while stock prices (25) are derived from the market clearing conditions in (9). The complementary slackness condition in (28) is established in Chapter 6.3 of Karatzas and Shreve (1998).

Q.E.D.

Proof of Corollary 1. The proof directly follows from Proposition 1 by noting that the last term in the expression for \( r \) in (19) disappears.

Q.E.D.

Proof of Proposition 2. We obtain expressions (42)–(46) for equilibrium parameters from expressions (19)–(23) in Proposition 1 by substituting adjustment parameters (37) and risk-aversion and prudence parameters for CRRA preferences, given by

\begin{align*}
A_{1t} &= \frac{\gamma}{c_{1t}}, \quad A_{2t} = \frac{\gamma}{c_{2t}}, \quad A_t = \frac{\gamma}{\delta_t}, \\
P_{1t} &= \frac{1 + \gamma}{c_{1t}}, \quad P_{2t} = \frac{1 + \gamma}{c_{2t}}, \quad P_t = \frac{1 + \gamma}{\delta_t}. \tag{A.4}
\end{align*}
Expressions for wealths $W_{it}$ follow from the first order condition for consumption in (39), while the expression for price-dividend ratio $R$ follows from the expression for stock price (25), derived from consumption clearing, and the expressions for wealths in (47). Optimal policy for investor 1, $\theta_{it}$, in (49) is obtained by solving an HJB equation, while policy for investor 2 equals $\bar{\theta}$ since the investor always binds on her constraint, as demonstrated in Section 3. Stock return volatility $\sigma$ in (50) is derived by applying Itô’s Lemma to stock price, given by $S_t = R_t \delta_t$.

To obtain $\sigma_\lambda$, from the definition of $\kappa_{it}$ in (11), expression for $\kappa_{it}$ in (43) and expressions for adjustments in (37) we find that

$$\kappa_{2it} = \gamma \sigma_\delta - \frac{1}{1 + \lambda_t^{1/\gamma}} \sigma_\lambda. \quad \text{(A.5)}$$

Substituting $\kappa_{2it}$ from (A.5) into expression for optimal investment policy (41) and noting that the constraint binds at all times we obtain the following equation for $\sigma_\lambda$:

$$\frac{1}{\gamma \sigma_t} \left( \gamma \sigma_\delta - \sigma_\lambda \left( \frac{1}{1 + \lambda_t^{1/\gamma}} + \gamma \frac{\partial H_{it}}{\partial \lambda_t} \frac{\lambda_t}{H_{it}} \right) \right) = \bar{\theta}. \quad \text{(A.6)}$$

Substituting volatility $\sigma$ given by first expression in (50) into equation (A.6) and solving it yields $\sigma_\lambda$ given by second expression in (50). Finally, the equation for $\lambda_0$ is obtained from the budget constraint at time 0

$$\bar{\theta} W_{20} + b = W_{20},$$

by substituting $W_{20}$ from (47) at $t = 0.13$ Q.E.D.

**Proof of Corollary 2.** Applying Itô’s Lemma to both sides of the first order conditions for consumption (14) and matching the terms we find that

$$c_{it} \sigma c_{it} = \frac{\kappa_{it}}{A_{it}}. \quad \text{(A.7)}$$

We also note that the results of Proposition 2 can be derived without relying on the methodology in Cvitanic and Karatzas (1992) by solving the HJB for investor 2 directly in constrained economy. Since the constraint is always binding the problem is equivalent to the one with constraint $\theta_{2t} = \bar{\theta}$. The HJB equation is then given by (36) in which $\theta_{2t} = \bar{\theta}$ and $\nu_{2t} = 0$, since we solve in constrained economy. Then, conjecturing that $J_{2t}$ has form (38) yields equation for $H_{2t}$. From the first order condition (39) we obtain $e^{-\rho t} W_{2t}^\gamma \frac{\partial H_{2t}^{1/\gamma}}{\partial \lambda_t} = \xi_{2t}$, where $\xi_{2t}$ is the marginal utility of investor 2 which follows the process (10). Applying Itô’s Lemma to both sides shows that

$$\frac{\partial \sigma_t}{\gamma} = \sigma_\lambda \frac{\partial H_{2t}}{\partial \lambda_t} \frac{\lambda_t}{H_{2t}}. \quad \text{(A.7a)}$$

Substituting this expression into HJB after some algebra we obtain equation (40) for investor 2. Price of risk $\kappa_{2t}$ can be found from (A.2)–(A.3) while $r_2$ can be found by applying Itô’s Lemma to $\xi_{2t} W_{2t} = e^{-\rho t} W_{2t}^{1/\gamma} H_{2t}^{1/\gamma}$, noting that the right-hand side satisfies HJB equation, $\theta_{2t} = \bar{\theta}$, and matching the terms.

Moreover, since investor 1 faces complete market, in the derivation of $r_t$ and $\kappa_t$ to obtain equations (A.1)–(A.2) we assume that $u'(c_{1t}^*) = \psi_1 e^{\rho t} \xi_{1t}$

where $\xi_{1t} = -\xi_{1t} [r_t dt + \kappa_t dw_t]$. Huang and Pages (1992) derive this result assuming that $\int_0^t |r_\tau| d\tau < \infty$ a.s., and $\kappa_t < \bar{K}$ a.s., where $\bar{K}$ is a constant. It is difficult to check these conditions analytically. However, the graphs on Figure 3 demonstrate that the states with $y$ close to 1, where $r_t$ and $\kappa_t$ are unbounded, have zero probability, and hence, the conditions are likely to be satisfied. We also check numerically that the integrals in investor’s optimization (6) converge to $J_{it}$ derived in Section 3.
Since investor 1 is unconstrained, $\kappa_1 = \kappa$ and is given by (43) while $\kappa_2$ is given by (A.5). Substituting $\kappa_1$ and $\kappa_2$ into (A.7) and noting that for CRRA utility $A_i = \gamma/c_i$ we obtain expressions (55) for volatilities $\sigma_{c_i}$.

*Proof of Proposition 3.* From expression (59) we first express the Brownian motion $w^p$ in terms of the Brownian motion $w^o$ as follows:

$$dw_t^o = \Delta \mu_{st} dt + dw_t^o,$$

and then rewrite all subsequent stochastic processes in terms of Brownian motion $w^o$ under optimist’s probability measure. Then, state prices $\xi_{it}$ in fictitious economies follow processes:

$$d\xi_{ot} = -\xi_{ot} [r_{ot} dt + \kappa_t^o dw_t^o], \quad d\xi_{pt} = -\xi_{pt} [(r_{pt} + \Delta \mu_{st} \kappa_t^p) dt + \kappa_t^p dw_t^o].$$ (A.9)

Optimal consumptions in fictitious economies are given by (15). Substituting them into consumption clearing condition in (9), applying Itô’s Lemma to both sides and matching terms as in the proof of Proposition 1 after some algebra we obtain:

$$\frac{r_t - \rho}{A_t} + \frac{f_o(\nu_{ot}^c)}{A_{ot}} + \frac{f_p(\nu_{pt}^c)}{A_{pt}} + 2 \left( P_{ot} \left( \frac{\kappa_t^o}{A_{ot}} \right)^2 + P_{pt} \left( \frac{\kappa_t^p}{A_{pt}} \right)^2 \right) = \frac{\kappa_t^o}{A_{ot}} \frac{\mu_{st}}{\sigma_{st}} + \frac{\kappa_t^p}{A_{pt}} \mu_{st}, \quad (A.10)$$

$$\frac{\kappa_t^o}{A_{ot}} + \frac{\kappa_t^p}{A_{pt}} = \delta_t \sigma_{st}. \quad (A.11)$$

By applying Itô’s Lemma to both sides of the definition of $\lambda$ in (16) and noting that marginal utilities $u'_i(c_i^*)$ are given by (14) and state prices follow (A.9), matching the terms we obtain the drift $\mu_\lambda$ and volatility $\sigma_\lambda$ of the weighting process (64) for the optimist:

$$\mu_\lambda^o = \sigma_\lambda \kappa_t^o - \Delta \mu_{st} \kappa_t^o + f_o(\nu_{ot}^c) - f_p(\nu_{pt}^c), \quad \sigma_\lambda = \kappa_t^o - \kappa_t^p. \quad (A.12)$$

Using equations (A.10), (A.11) and the second equation in (A.12) we obtain expressions for $r$ and $k$ in Proposition 3.

To obtain drift $\mu_M^o$ we rewrite the process for $\lambda_t$ given by (64) under the Brownian motion of the optimist as follows

$$d\lambda_t = -\lambda_t [(\mu_\lambda^o + \sigma_\lambda \Delta \mu_{st}) dt + \sigma_\lambda dw_t^o].$$

Matching the drift parameters for the processes for $\lambda_t$ from both optimist’s and pessimist’s points of view yields expression for $\mu_\lambda^o$ in Proposition 3. To obtain expression for $\sigma_\lambda$ we note first that by the definition of prices of risk in fictitious economies

$$\kappa_t^o = \frac{\mu_t^o - r_t}{\sigma_t} + \frac{\nu_t^o}{\sigma_t}, \quad \kappa_t^p = \frac{\mu_t^p - r_t}{\sigma_t} + \frac{\nu_t^p}{\sigma_t}. \quad (A.13)$$

Moreover, rewriting the process for stock prices $S_t$ for both the optimist and pessimist in terms of Brownian motion $w^o$

$$dS_t = S_t [\mu_t^o dt + \sigma_t dw_t^o]$$

$$= S_t [(\mu_t^o + \Delta \mu_{st} \sigma_t) dt + \sigma_t dw_t^o].$$

$$36$$
and matching the terms we obtain
\[ \frac{\mu^o_t - \mu^p_t}{\sigma_t} = \Delta \mu_{\delta t}. \] (A.14)

The expression for \( \sigma_\lambda \) in (A.12) along with equations (A.13) and (A.14) gives \( \sigma_\lambda \) reported in Proposition 3. The rest of the proof is as in Proposition 1.

**Q.E.D.**

**Proof of Proposition 4.** From the definition of the support function in (12) applied to \( \theta \geq \theta \) and the expression (68) for volatility \( \sigma_\lambda \) we obtain that adjustment parameters are given by
\[ \nu_{1t}^* = 0, \quad f(\nu_{1t}^*) = 0, \quad \nu_{2t}^* = \sigma_t(\Delta \mu_{\delta t} - \sigma_M), \quad f(\nu_{2t}^*) = -\theta \sigma_t(\Delta \mu_{\delta t} - \sigma_M). \] (A.15)

Substituting adjustments (A.15) and risk-aversion and prudence parameters in (A.4), into the expressions (65)–(69) we obtain equilibrium parameters (71)–(74) reported in Proposition 4.

Consumptions (75) are obtained from the consumption clearing condition in (9) and definition of \( \lambda_t \) in (16). Wealth-consumption ratios \( H^o \) and \( H^p \) satisfy HJB equations (40) in which \( \mu_\lambda \) is replaced by \( \mu^o_\lambda \) and \( \mu^p_\lambda \) respectively. Hence, from first order condition for consumption in (39) and market clearing condition we obtain expressions for \( W^*_t \) and \( R_t \). Expressions for optimal policies are obtained by solving HJB equations in fictitious economies, as in Section 3, while stock return volatility \( \sigma \) is obtained by applying Itô’s Lemma to stock price \( S_t = R_t \delta_t \).

The complementary slackness condition in (28) in our setting takes the form \((\theta - \theta^*_t)\nu_{\delta t}^* = 0\). As a result, if constraint is not binding \( \nu_{\delta t}^* = 0 \), and hence, from the expression in (68) it follows that \( \sigma_\lambda = \Delta \mu_{\delta t} \). To solve for \( \sigma_\lambda \) when the constraint is binding we first substitute \( \kappa^p \) from (72) into the investment policy (78) and obtain
\[ \theta^*_{pt} = \frac{1}{\gamma \sigma_t} \left( \gamma \sigma_\delta - \sigma_M \left( \frac{1}{1 + \lambda_t^{1/\gamma}} + \frac{\partial H^p_t}{\partial \lambda_t} \frac{\lambda_t}{H^p_t} \right) \right). \] (A.16)

Then, substituting \( \sigma \) from (79) into (A.16) and solving equation \( \theta^*_{pt} = \theta \) we obtain
\[ \sigma_M = \frac{(1 - \theta) \gamma \sigma_\delta}{1 + \frac{1}{\lambda_t^{1/\gamma}} + \gamma \frac{\partial H^p_t}{\partial \lambda_t} \frac{\lambda_t}{H^p_t} - \theta \gamma \frac{\partial R_t}{\partial \lambda_t} \frac{\lambda_t}{R_t}}. \] (A.17)

Moreover, since \( \nu_{2t}^* \geq 0 \) (Table 1 case (e)) if the constraint binds \( \sigma_\lambda \) is given by (A.17) and should be lower than \( \Delta \mu_{\delta t} \) which leads to expression for \( \sigma_\lambda \) in Proposition 4.²

**Q.E.D.**

**Proof of Proposition 5.** The proof is a multi-dimensional version of the proof of Proposition 1.

**Q.E.D.**

**Proof of Corollary 3.** From the definition of support functions in (12) it follows easily that \( f_i(\nu) \geq 0 \) if \( 0 \in \Theta_i \). Then, the proof follows from the fact that in the expression for interest rates \( r \) in Proposition 5 the second and third terms are positive while the last term vanishes.

²Similarly to the discussion in the footnote in the proof of Proposition 2 it can be argued that the results in Proposition 4 can be obtained without relying on the methodology in Cvitanic and Karatzas (1992).
Appendix B: Numerical Method

We here present the details of our numerical solution method in Section 3 for $\gamma > 1$. Since variable $\lambda$ takes values in the interval $(0, +\infty)$ we first rewrite the HJB equations (40) in terms of variable $y = \lambda^{1/\gamma}/(1 + \lambda^{1/\gamma})$. By $\bar{H}_i(y, t)$ we denote wealth-consumption ratios as functions of $y$ so that

$$H_i(\lambda, t) = \bar{H}_i(y(\lambda), t).$$  \hspace{1cm} (B.1)

The derivatives of $H_i(\lambda, t)$ then can be expressed in terms of derivatives of $\bar{H}_i(y, t)$ by differentiating both sides in (B.1) as follows:

$$\frac{\partial H_i}{\partial t} = \frac{\partial \bar{H}_i}{\partial t}, \quad \lambda \frac{\partial H_i}{\partial \lambda} = \frac{y(1 - y) \partial \bar{H}_i}{\gamma},$$  \hspace{1cm} (B.2)

$$\lambda^2 \frac{\partial^2 H_i}{\partial \lambda^2} = \frac{y^2(1 - y)^2}{\gamma^2} \frac{\partial^2 \bar{H}_i}{\partial y^2} + \frac{2y(1 - y)((1 - \gamma)/2 - \gamma)}{\gamma^2 \partial \bar{H}_i}. \quad (B.3)

Taking into account our change of variable and the expressions for derivatives in (B.2)–(B.3) from the expressions in Proposition 3, definitions of parameters $r_i\sigma$ and $\kappa_i\sigma$ in (11), and expressions for adjustment parameters in (37) we obtain the following expressions for equilibrium parameters in fictitious economies:

$$r_{1t} = \bar{r} - \frac{y}{1 - y} \bar{\theta} \sigma_t \sigma_{yt} - \frac{1 + \gamma}{2\gamma} \frac{y}{1 - y} \sigma_{yt}^2, \quad \kappa_{1t} = \gamma \sigma_\delta + \frac{y}{1 - y} \sigma_{yt},$$

$$r_{2t} = \bar{r} + \bar{\theta} \sigma_t \sigma_{yt} - \frac{1 + \gamma}{2\gamma} \frac{y}{1 - y} \sigma_{yt}^2, \quad \kappa_{2t} = \gamma \sigma_\delta - \sigma_{yt}, \quad (B.4)$$

$$\mu_{\lambda t} = \frac{\mu_{yt}}{1 - y}, \quad \sigma_{\lambda t} = \frac{\sigma_{yt}}{1 - y}$$

where $\bar{r}$ is given by (45), $\mu_{yt}$, $\sigma_t$ and $\sigma_{yt}$ are given by

$$\mu_{yt} = \gamma \sigma_\delta \sigma_{yt} - \sigma_{yt}^2, \quad \sigma_t = \sigma_\delta - \frac{\mu_{yt}}{\gamma} \frac{\partial \bar{R}_t}{\partial y}, \quad \sigma_{yt} = \frac{(1 - \bar{\theta})\gamma \sigma_\delta}{1 + \frac{\partial \bar{R}_t}{\partial y} \frac{\mu_{yt}}{\gamma} - \bar{\theta} \frac{\partial \bar{R}_t}{\partial y} \frac{\mu_{yt}}{\gamma}}, \quad (B.5)$$

and $\bar{R}_t$ is a price-dividend ratio as a function of $y$. Substituting expressions for derivatives (B.2) and (B.3) into the HJB equations (40) we obtain the following PDEs for $\bar{H}_i$:

$$\frac{\partial \bar{H}_i}{\partial t} + \frac{y^2 \sigma_{yt}^2}{\gamma^2} \frac{\partial^2 \bar{H}_i}{\partial y_t^2} + \frac{y^2}{\gamma^2} \left( \frac{\sigma_{yt}}{1 - y} - \gamma \mu_{yt} - (1 - \gamma) \kappa_i \sigma_{yt} \right) \frac{\partial \bar{H}_i}{\partial y_t}$$

$$+ \frac{1}{\gamma} \left( \frac{1 - \gamma}{2\gamma} \kappa_{it}^2 + (1 - \gamma)r_{it} - \rho \right) \bar{H}_i + 1 = 0, \quad i = 1, 2. \quad (B.6)$$

To find stationary, time-independent solutions of equations (B.6) we fix a large horizon $T$, pick two functions $\tilde{h}_1(y)$ and $\tilde{h}_2(y)$, specify terminal condition

$$\tilde{H}_i(y, T) = \tilde{h}_i(y), \quad i = 1, 2, \quad (B.7)$$

38
and solve HJB equations (B.6) backwards until the convergence to stationary solutions. We assume that functions \( \tilde{h}_i \) are continuous and differentiable on the interval \([0, 1]\) and satisfy conditions \( \tilde{h}_1(1) = 0 \) and \( \tilde{h}_2(1) = (\gamma - 1) \tilde{h}_2(1) \).

We assume that \( \tilde{H}_i(y, t) \) are twice continuously differentiable in the interval \((0, 1)\), have bounded first and second right derivatives at \( y = 0 \), \( \sigma_y^2 > 0 \), and there exist limits \( (1 - y)^2 \partial^2 \tilde{H}_1(y, t)/\partial y^2 \to 0 \), \( (1 - y) \partial^2 \tilde{H}_2(y, t)/\partial y^2 \to 0 \) and \( (1 - y) \partial \tilde{H}_1(y, t)/\partial y \to 0 \), as \( y \to 1 \). After we compute the solutions we also verify numerically that these assumptions are satisfied for \( \gamma > 1 \).

Passing to the limit \( y \to 0 \) in equations (B.6) we obtain simple ordinary differential equations for \( H_i(0, t) \) solving which yields boundary conditions at \( y = 0 \):

\[
\tilde{H}_i(0, t) = \tilde{h}_i(0) e^{\rho_i(T-t)} + e^{\rho_i(T-t)} \frac{1}{p_i}, \quad i = 1, 2, \tag{B.8}
\]

where

\[
p_1 = \frac{1 - \gamma \bar{\theta} \bar{\sigma}_y^2}{2} + \frac{(1 - \gamma) \bar{\rho} - \bar{\sigma}_y^2}{\gamma}, \quad p_2 = \frac{1 - \gamma \bar{\theta} \bar{\sigma}_y^2}{2} + \frac{(1 - \gamma) \bar{\rho} - \bar{\sigma}_y^2}{\gamma}. \tag{B.9}
\]

Expressions in (B.8) and (B.9) demonstrate that conditions \( p_i \leq 0 \) are necessary for the existence of stationary solutions of equations (B.6). To obtain boundary conditions at \( y = 1 \) we multiply the equations for \( H_1(y, t) \) and \( H_2(y, t) \) by \((1 - y)^2\) and \((1 - y)\), respectively, and passing to the limit \( y \to 1 \) we obtain:

\[
(1 - \bar{\theta})(\gamma - 1) \tilde{H}_1(1, t) = 0, \quad \frac{\partial \tilde{H}_2(1, t)}{\partial y} = (\gamma - 1) \tilde{H}_2(1, t). \tag{B.10}
\]

The problem then becomes to solve HJB equations (B.6) subject to terminal condition (B.7) and boundary conditions (B.8) and (B.10).

For simplicity, in the description of the numerical method we omit subscript \( i \). We let the time and state variable increments denote \( \Delta t = T/M \) and \( \Delta y = 1/N \), where \( M \) and \( N \) are integer numbers, and index time and state variables by \( t = 0, \Delta t, 2\Delta t, \ldots, T \) and \( y = 0, \Delta y, 2\Delta y, \ldots, 1 \), respectively. Next, we derive discrete-time analogues of HJB equations and boundary conditions replacing derivatives by their finite-difference analogues as follows:

\[
\frac{\tilde{H}_{n,k+1} - \tilde{H}_{n,k}}{\Delta t} + a_{n,k+1} \frac{\tilde{H}_{n+1,k} - 2\tilde{H}_{n,k} + \tilde{H}_{n-1,k}}{\Delta y^2} + b_{n,k+1} \frac{\tilde{H}_{n,k} - \tilde{H}_{n-1,k}}{\Delta y} + c_{n,k+1} \tilde{H}_{n,k} + 1 = 0, \tag{B.11}
\]

\[
\tilde{H}_{n,M} = \tilde{h}_n, \quad \tilde{H}_{0,k} = d_{0,k}, \quad \tilde{H}_{N,k} = e_{N,k} \tilde{H}_{N-1,k}, \tag{B.12}
\]

where \( n = 1, 2, \ldots, N - 1, k = 1, 2, \ldots, M - 1, \tilde{H}_{n,k} = \tilde{H}(n\Delta y, k\Delta t) \). The coefficients in (B.11) correspond to coefficients in equation (B.6) and are computed using the solution \( \tilde{H}_{n,k+1} \), while coefficients in (B.11) are obtained by replacing terminal condition (B.7) and boundary conditions (B.8) and (B.10) by their finite-difference analogues. The system of equations in (B.11)–(B.12) is then solved backwards in time, starting at \( k = M - 1 \). Given solution \( \tilde{H}_{n,k+1} \) we compute all the coefficients in (B.11) at step \( k + 1 \), and hence at step \( k \) function \( \tilde{H}_{n,k} \) for fixed \( k \) solves a
system of linear algebraic equations. We then iterate backwards until the process converges to a stationary time-independent solution.

Figure 1 shows the numerical solutions for wealth-consumption ratios plotted against constrained investors share of consumption, $y$, for plausible exogenous parameters. These numerical solutions have the appearance of bounded and twice continuously differentiable on interval $[0, 1]$ functions irrespective of the grid parameter $\Delta y$. Assuming that they are indeed twice continuously differentiable, and given that they satisfy finite-difference equations (B.11)–(B.12), passing to a limit $\Delta y \to 0$ indeed gives solutions to the HJB equations for wealth-consumption ratios.\footnote{As an additional check we also verify by Monte-Carlo simulations that for both investors integrals in their optimization problem (6) do not explode under optimal consumption policies in (46) and converge to the values obtained by our numerical method. The convergence of those integrals also implies that the transversality conditions for HJB equation (36) are satisfied.}

The model with heterogeneous beliefs in Section 4.1 is solved in a similar way. First, we derive an HJB equation in terms of consumption share $y$, which is given by (B.6) in which $\mu_y$ is replaced by $\mu^i_y$. Then, we obtain boundary conditions and solve the finite-difference equations numerically.

**Remark (Case $\gamma < 1$).** When risk aversion $\gamma$ is less than unity wealth-consumption ratio $H_{1t}$ and its derivatives become unbounded while $\sigma_{yt}$ approaches zero as $y$ approaches unity. As a result, the assumptions under which the boundary conditions (B.8) and (B.10) are derived are violated. Therefore, the case $\gamma < 1$ should be considered separately and we do not address it in this paper given that plausible risk aversions $\gamma$ are well above unity.
References


